A Robust Algorithm for Solving Nonlinear Programming Problems

A Robust Algorithm for Solving Nonlinear Programming Problems

ID:38156419

大小:63.90 KB

页数:4页

时间:2019-05-27

A Robust Algorithm for Solving Nonlinear Programming Problems_第1页
A Robust Algorithm for Solving Nonlinear Programming Problems_第2页
A Robust Algorithm for Solving Nonlinear Programming Problems_第3页
A Robust Algorithm for Solving Nonlinear Programming Problems_第4页
资源描述:

《A Robust Algorithm for Solving Nonlinear Programming Problems》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、ARobustAlgorithmforSolvingNonlinearProgrammingProblemsYanLiLi-ShanKangComputationCenter,StateKeyLaboratoryofSoftwareEngineering,WuhanUniversity,Wuhan,430072,ChinaWuhanUniversity,Wuhan,430072,Chinallyyan2000@21cn.comAbstractweintroducetheconceptofasubspaceVofthedomainD.Inthispap

2、er,weintroduceanewalgorithmforsolvingnonlinearmpoints(Xj,Yj),j=1,2,L,minDareusedtoprogramming(NLP)problems.ItisanextensionofGuo’salgorithm[1]constructthesubspaceV,definedas-mwhichpossessesenhancedcapabilitiesforsolvingNLPproblems.TheseV={(Xv,Yv)ÎD(Xv,Yv)=åi=1ai(Xi,Yi)}capabilit

3、iesinclude:a)advancingthevariablesubspace,b)addingamwhereaiissubjecttoåi=1ai=1,-0.5£ai£1.5.searchprocessoversubspacesandnormalizedconstraints,c)usinganBecauseGuo’salgorithmdealsmainlywithoptimizationadaptivepenaltyfunction,andd)addingtheabilitytodealwithintegerproblemswhichhave

4、realvariablesandINequalityNLPproblems,0-1NLPproblems,andmixed-integerNLPproblemsconstraints,weassumek1=0andq=0intheexpression(1).whichhaveequalityconstraints.Thesefourenhancementsincreasetheì0,gi(X)£0Denotingwi(X)=ícapabilitiesofthealgorithmtosolvenonlinearprogrammingproblemsîg

5、i(X),otherwiseinamorerobustanduniversalway.Thispaperwillpresentresultsofk2numericalexperimentswhichshowthatthenewalgorithmisnotonlyandW(X)=åwi(X)i=1morerobustanduniversalthanitscompetitors,butalsoitsWedefineaBooleanfunction“better”as:performancelevelishigherthananyothersintheli

6、terature.ìW(X1)£W(X2)TRUEïïW(X1)>W(X2)FALSEbetter(X,X)=í12ï(W(X1)=W(X2))Ù(f(X1)£f(X2))TRUEï(W(X1)=W(X2))Ù(f(X1)>f(X))FALSEî2Ifbetter(X1,X2)isTRUE,thismeansthattheindividualX1is1INTRODUCTIONTOGUO’SALGORITHM“better”thantheindividualX2.Guo’salgorithmcanbedescribedasfollows:Itwassh

7、ownin[1]thatGuo’salgorithmhasmanyGuo’sAlgorithmadvantageswhensolvingoptimizationproblems.SincetheBeginnewalgorithmpresentedinthispaperisbaseduponGuo’sinitializepoplnP={X1,X2,…,XN};XiÎDalgorithm,itisadvisabletofirstpresentbrieflyitsmain/since(q=0impliesnointegervariables)/genera

8、tioncountt:=0;features.Xbest=argMinf(Xi);ThegeneralNLP

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。