A hierarchical statistical framework for the segmentation of deformable objects in image se

A hierarchical statistical framework for the segmentation of deformable objects in image se

ID:38147432

大小:342.55 KB

页数:6页

时间:2019-05-27

A hierarchical statistical framework for the segmentation of deformable objects in image se_第1页
A hierarchical statistical framework for the segmentation of deformable objects in image se_第2页
A hierarchical statistical framework for the segmentation of deformable objects in image se_第3页
A hierarchical statistical framework for the segmentation of deformable objects in image se_第4页
A hierarchical statistical framework for the segmentation of deformable objects in image se_第5页
资源描述:

《A hierarchical statistical framework for the segmentation of deformable objects in image se》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、AhierarchicalstatisticalframeworkforthesegmentationofdeformableobjectsinimagesequencesCharlesKervrannandFabriceHeitzIRISA/INRIA,CampusUniversitairedeBeaulieu,35042RennesCedex,FranceE-mail:kervrann@irisa.fr,heitz@irisa.frIEEEComputerVisionPatternRecognitionJune1994,Seattle,USAA

2、HierarchicalStatisticalFrameworkfortheSegmentationofDeformableObjectsinImageSequencesCharlesKervrannandFabriceHeitzIRISA/INRIA-RennesCampusUniversitairedeBeaulieuF-35042RennesCedex,FranceAbstractprocess;theycanbeseenasare nementoftheglobaldeformationsappliedtotheoriginalshape

3、.ThejointInthispaper,weproposeanewstatisticalframeworkfordistributionofthedeformabletemplateisderivedandmodelingandextracting2DmovingdeformableobjectsfromaMaximumAPosteriori(map)estimateofthede-imagesequences.Theobjectrepresentationreliesonahie-formationsisobtainedbyminimizing

4、aglobalenergyrarchicaldescriptionofthedeformationsappliedtoatem-(objective)functiondescribingtheinteractionsbet-plate.GlobaldeformationsaremodeledusingaKarhunenweenobservations(spatialortemporalgradientsex-Loeveexpansionofthedistorsionsobservedonarepre-tractedfromtheimage)andt

5、hedeformationprocess.sentativepopulation.LocaldeformationsaremodeledbyThemethodcombinestheadvantagesoffastglobala( rst-order)Markovprocess.Theoptimalbayesianes-optimizationtechniqueswithacompacthierarchicaltimateoftheglobalandlocaldeformationsisobtainedbystatisticaldescription

6、ofdeformations.Thisyieldsfastmaximizinganon-linearjointprobabilitydistributionusingmodeladjustmentandrobustsegmentation.stochasticanddeterministicoptimizationtechniques.TheComputervisionmethodsrelyingondeformableuseofglobaloptimizationtechniquesyieldsrobustandre-templatesareof

7、tenexpressedastheminimizationofliablesegmentationsinadversesituationssuchaslowsignal-(global)energyfunctionsdescribingtheinteractionsto-noiseratio,non-gaussiannoiseorocclusions.Moreo-betweentheobserveddataandthevariablesofthever,nohumaninteractionisrequiredtoinitializethemo-mo

8、del[4,8,9].Inmostmethods[1,5,7,8,9](apartdel.Theapproachisdem

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。