基于L4891B设计的APFC电路设计

基于L4891B设计的APFC电路设计

ID:38097211

大小:147.00 KB

页数:6页

时间:2019-05-24

基于L4891B设计的APFC电路设计_第1页
基于L4891B设计的APFC电路设计_第2页
基于L4891B设计的APFC电路设计_第3页
基于L4891B设计的APFC电路设计_第4页
基于L4891B设计的APFC电路设计_第5页
资源描述:

《基于L4891B设计的APFC电路设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、基于L4891B设计的APFC电路设计电源是每一个电子设备所必须的重要组成部分。按照国际电工委员会标准IEC61000—3—2的要求,电子设备输入电流中谐波电流成分都有一定的限值,小功率电源可以使用简单的无源功率因数校正,即可获得有效的抑制,而大功率电源则普遍使用有源功率因数校正控制器。作为在较大功率电源中普遍使用的基于L4891B设计的APFC已有诸多介绍,但在实际电源设备的使用过程中,由于工作环境和使用要求的不同往往会出现这样或那样的问题,而限制和影响了它的广泛使用。鉴于此,针对在此过程中出现的

2、诸多问题进行了深入分析和探讨,并提出了一些切实可行的有效解决方案。1如何提高效率现代技术的发展要求电器设备,既要小巧,又要高效,还要求输入电压具有更广泛的通用性。一个完整的BoostAPFC包括全波整流和升压型DC—DC转换,这种配置的APFC具有许多优点:连续输入电流和容易提高功率因数。升压型拓扑结构通过限制输入电压也可以获得很高的效率,但当输入电压范围变宽后,要维持同样的高效率就变得有些困难。为此在实际的应用产品中,采用电路简单、可靠性较高的3种方法:一是减小半导体二极管的反向恢复损耗;二是用I

3、GBT代替MOSFET,以减小开通损耗;再就是减小交流损耗。首先,选用一种SiC肖特基二极管,它具有高的温度特性(最高允许工作温度达到300℃),高的反向耐压,低的导通电阻和高的开关频率等。以上特点使得开关器件体积缩小,开关频率的提高也使得。BoostAPFC的体积进一步减小。同时它还具有正的温度系数,便于在大电流时采用多个二极管并联使用,不会造成二极管之间的电流出现不均衡的现象。再有这种二极管的反向恢复时间及反向电流都非常小,并且有非常好的温度特性,其反向恢复时间不会随着温度升高而变化。用它就会减

4、小开关管导通时的开关损耗,从而提高效率。其次,用IGBT代替MOsFET,一个主要的原因是:MOSFET开关在低输入电压时,由于导通器件的漏源极间为导通电阻,使得其导通损耗快速增加,即随着电流的增大而与电流的平方成正比。而IGBT则是集射极间的几乎是相同的电压饱和压降,因此,其导通损耗相对增加较慢,只与输入电流成线性关系。这就减小了在宽范围输入电压下的损耗,提高了系统效率。最后,减小交流损耗,交流损耗的产生主要由电感的纹波电流造成的。绝大部分的损耗来自于磁心本身,并且严重依赖于磁心材料本身,为此采用

5、非晶铁心材料饶制的电感,因为它具有优良的恒电感特性和抗直流偏磁能力,且损耗小。不过成本较贵,但对提高BoostAPFC效率效果明显。经过调整后带整流桥的BoostAPFC的输入功率与效率的关系,如下图1所示。2如何提高稳定性平均电流控制技术是在峰值电流控制技术的基础上发展起来的。在这种控制方式中,乘法器与比较器之间增加了一个电流调节器。该电流调节器控制输入电流的平均值,使其与编程信号波形相同,由于电流环具有较高的增益带宽,跟踪误差小,因此瞬态特性较好。是目前应用最广泛的一种控制技术。这种技术的电压环

6、带宽控制在20Hz以下,电流环则要求足够快以满足不失真和低谐波的要求。事实是,在实际产品的设计过程中,经由理论分析设计的电路在带阻性负载或者交流变频压缩机测试时,工作一切正常。但当带直流变频压缩机这类感性负载工作时,就出现新的不稳定现象见图2,即遇到双周期分叉现象。由于在整个设计过程中,存在许多理想假设,例如:假设变换器的输出纹波很小;假设当通过较大输出电容时可被忽略,而大电容因其成本高,体积大,在实际中使用中并没有那么大;假设用输入电压有效值代替时变值,忽略其时变的影响等。另外由于PFC的固有属性

7、,PFC动态环路总是用低带宽进行补偿,目的是不对频率2xfL的纹波产生响应,这里fL指交流电源线的频率。因此,当负载突变时,调整电路不能做出快速响应,从而引起输出电压波动过大。而稳定系统自身可以调节扰动,使其重新进入稳定运行状态;不稳定系统无法控制扰动,从而进入不稳定运行状态。结果出现上述的双周期现象。变换器输出电容上的电压是由输入功率与输出功率的差所形成的,输入功率由乘法器的输出电流控制,而乘法器的输出电流又由前馈电流环及反馈电压环共同决定。电压前馈可用于补偿输入电压引起的增益变化,提高回路的稳定

8、性和对交流电压瞬变的瞬间响应性。同时,应有尽可能高的穿越频率,以实现快速跟踪性能。应有足够的稳定裕量,使系统有强的鲁棒性。为了解决这个问题,在芯片的外围设计中采用了增强动态响应功能。使用高纹波、低等效串联电阻(ESR)的电容,重新设计和调整电压环、电流环网络参数,反复试验,最后得出结论。即:仔细调节输出电压误差放大器的输出,使设计的电流环的瞬变跟踪特性变强,变换器在大电流和感性或阻性负载的情况下,皆具有更好的稳定输出电压的能力,消除了双周期现象的发生。功率因数与其他性

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。