欢迎来到天天文库
浏览记录
ID:38041552
大小:60.00 KB
页数:3页
时间:2019-05-04
《3、机械能守恒定律》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、三、机械能守恒定律及其应用一、机械能守恒定律1.机械能守恒定律的两种表述(1)在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。(2)如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。2.对机械能守恒定律的理解:(1)机械能守恒定律的研究对象一定是系统,至少包括地球在内。通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。另外小球的动能中所用的v,也是相对于地面的速度。(2)当研究对象(除地球以外)只有一个
2、物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。(3)“只有重力做功”不等于“只受重力作用”。在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。3.机械能守恒定律的各种表达形式(1),即;(2);;点评:用(1)时,需要规定重力势能的参考平面。用(2)时则不必规定重力势能的参考平面,因为重力势能的改变量与参考平面的选取没有关系。尤其是用,只要把增加的
3、机械能和减少的机械能都写出来,方程自然就列出来了。4.解题步骤⑴确定研究对象和研究过程。⑵判断机械能是否守恒。⑶选定一种表达式,列式求解。3二、机械能守恒定律的综合应用【例1】如图所示,质量分别为2m和3m的两个小球固定在一根直角尺的两端A、B,直角尺的顶点O处有光滑的固定转动轴。AO、BO的长分别为2L和L。开始时直角尺的AO部分处于水平位置而B在O的正下方。让该系统由静止开始自由转动,求:⑴当A到达最低点时,A小球的速度大小v;⑵B球能上升的最大高度。解析:以直角尺和两小球组成的系统为对象,由于转动过程不受
4、摩擦和介质阻力,所以该系统的机械能守恒。⑴过程中A的重力势能减少,A、B的动能和B的重力势能增加,A的即时速度总是B的2倍。,解得⑵B球不可能到达O的正上方,它到达最大高度时速度一定为零,设该位置比OA竖直位置向左偏了α角。2mg2Lcosα=3mgL(1+sinα),此式可化简为4cosα-3sinα=3,利用三角公式可解得sin(53°-α)=sin37°,α=16°点评:本题如果用EP+EK=EP'+EK'这种表达形式,就需要规定重力势能的参考平面,显然比较烦琐。用就要简洁得多。下面再看一道例题。K【例2
5、】如图所示,粗细均匀的U形管内装有总长为4L的水。开始时阀门K闭合,左右支管内水面高度差为L。打开阀门K后,左右水面刚好相平时左管液面的速度是多大?(管的内部横截面很小,摩擦阻力忽略不计)解析:由于不考虑摩擦阻力,故整个水柱的机械能守恒。从初始状态到左右支管水面相平为止,相当于有长L/2的水柱由左管移到右管。系统的重力势能减少,动能增加。该过程中,整个水柱势能的减少量等效于高L/2的水柱降低L/2重力势能的减少。不妨设水柱总质量为8m,则,得。3点评:本题在应用机械能守恒定律时仍然是用建立方程,在计算系统重力势
6、能变化时用了等效方法。需要注意的是:研究对象仍然是整个水柱,到两个支管水面相平时,整个水柱中的每一小部分的速率都是相同的。【例3】如图所示,游乐列车由许多节车厢组成。列车全长为L,圆形轨道半径为R,(R远大于一节车厢的高度h和长度l,但L>2πR).已知列车的车轮是卡在导轨上的光滑槽中只能使列车沿着圆周运动,在轨道的任何地方都不能脱轨。试问:在没有任何动力的情况下,列车在水平轨道上应具有多大初速度v0,才能使列车通过圆形轨道而运动到右边的水平轨道上?解析:当游乐车灌满整个圆形轨道时,游乐车的速度最小,设此时速度
7、为v,游乐车的质量为m,则据机械能守恒定律得:要游乐车能通过圆形轨道,则必有v>0,所以有3
此文档下载收益归作者所有