初二数学19.1.1《平行四边形及其性质(一)》教案.doc

初二数学19.1.1《平行四边形及其性质(一)》教案.doc

ID:38029274

大小:96.50 KB

页数:5页

时间:2019-05-05

初二数学19.1.1《平行四边形及其性质(一)》教案.doc_第1页
初二数学19.1.1《平行四边形及其性质(一)》教案.doc_第2页
初二数学19.1.1《平行四边形及其性质(一)》教案.doc_第3页
初二数学19.1.1《平行四边形及其性质(一)》教案.doc_第4页
初二数学19.1.1《平行四边形及其性质(一)》教案.doc_第5页
资源描述:

《初二数学19.1.1《平行四边形及其性质(一)》教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、19.1.1平行四边形及其性质(一)学情分析:由于电脑派位的原因,我校初中每个班的学生成绩都是反正态分布,也就是两头大中间小,经常是课堂准备的内容好的学生喂不饱,差的学生觉得太难了,无法做到我们常说的抓两头促中间。正对于我们任课老师来说是个很大难题,因些,我在课堂上尝试多种教学形式,主要是激发学生的学习兴趣!其中,把内容让给学生自己讲,老师做主持人,对学生的讲法进行补充是我最常用的教学形式!根据内容的深浅安排不同程度的学生出来讲,既能照顾不同层次的学生又能激发他们的学习积极性!而在做练习时,鼓励基础差的学生在不懂的情况下问身边成绩好的同学。这样既能创造一个良好的学习气

2、氛,又能促进学生之间的沟通!我对学生提出数学课的宗旨是“能在课堂解决的问题就在课堂上解决!”经过一年的实践,我们班的数学成绩稳步上升,已经从原来的倒数一、二名跃到了全级第一名,超过了学生心目中的“重点班”3班。学生也慢慢地爱上上数学课了!教学准备:制作课件,设计学案,学生准备尺子、量角器等一、教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.二、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及

3、性质的应用.2.难点:运用平行四边形的性质进行有关的论证和计算.三、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.①∵AB//DC,AD//BC,∴四边形ABCD是平行四边形(判定);5②∵四

4、边形ABCD是平行四边形∴AB//DC,AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行以外,还有什么性质?用你手上的尺子和量角器来试一试(1)由定义知道,平行四边形的对边平

5、行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.(让学生出来讲自己的证明方法)已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,

6、AD∥BC,∴ ∠1=∠3,∠2=∠4.又 AC=CA,∴ △ABC≌△CDA(ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴ ∠BAD=∠BCD.由此得到:平行四边形性质1  平行四边形的对边相等.平行四边形性质2平行四边形的对角相等.命题的证明往往要画图,写已知、求证,转化成数学语言来证四、例习题分析例1(教材P84例1)小明用一根36m长的绳子围成了一个平行四边行的场地,其中AB边长为8m,其它三条边的长各是多少?(较简单,让学生回答就可以了)5DABC五、随堂练习1.如图1:ABCD中∠A=50°,AB=a,BC=b.则:∠B=

7、,∠C=,AB图2CDABCD的周长=.图12.如图2:ABCD中∠A+∠C=200°.则:∠A=,∠B=.3.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B,AD=BC,AB=CD,又AE=CF,根据等式质,可得BE=DF.由“边角边”可得出所需要的结论.温故知新题:(上学期等腰三角行的测验题)如右图,从等腰三角形底边上任一点,分别

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。