实验2:ADC数据采集

实验2:ADC数据采集

ID:37819237

大小:519.03 KB

页数:9页

时间:2019-05-31

实验2:ADC数据采集_第1页
实验2:ADC数据采集_第2页
实验2:ADC数据采集_第3页
实验2:ADC数据采集_第4页
实验2:ADC数据采集_第5页
资源描述:

《实验2:ADC数据采集》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、实验2:ADC数据采集1、实验目的了解ARM处理器ADC接口的处理机制;掌握在S3C2410A平台下进行ADC接口应用编程本思想和过程。2、实验内容学习A/D接口原理,了解实现A/D系统对于系统的软件和硬件要求。阅读ARM芯片文档,掌握ARM的A/D相关寄存器的功能,熟悉ARM系统硬件的A/D相关接口。利用外部模拟信号编程实现ARM循环采集全部前3路通道,并且在超级终端上显示。3、预备知识用ARMADS1.2集成开发环境,编写和调试程序的基本过程。ARM应用程序的框架结构。4、实验设备及工具硬件:PC机、嵌入式系

2、统实验箱软件:Windows操作系统、ADS1.2集成开发环境、超级终端通讯程序。5、实验原理(1)A/D转换器A/D转换器是模拟信号源和CPU之间联系的接口,它的任务是将连续变化的模拟信号转换为数字信号,以便计算机和数字系统进行处理、存储、控制和显示。在工业控制和数据采集及许多其他领域中,A/D转换是不可缺少的。A/D转换器有以下类型:逐位比较型、积分型、计数型、并行比较型、电压-频率型,主要应根据使用场合的具体要求,按照转换速度、精度、价格、功能以及接口条件等因素来决定选择何种类型。常用的有以下两种:1)双积

3、分型的A/D转换器双积分式也称二重积分式,其实质是测量和比较两个积分的时间,一个是对模拟输入电压积分的时间T0,此时间往往是固定的;另一个是以充电后的电压为初值,对参考电源Vref反向积分,积分电容被放电至零所需的时间T1。模拟输入电压Vi与参考电压VRef之比,等于上述两个时间之比。由于VRef、T0固定,而放电时间T1可以测出,因而可计算出模拟输入电压的大小(VRef与Vi符号相反)。由于T0、VRef为已知的固定常数,因此反向积分时间T1与输入模拟电压Vi在T0时间内的平均值成正比。输入电压Vi愈高,VA愈

4、大,T1就愈长。在T1开始时刻,控制逻辑同时打开计数器的控制门开始计数,直到积分器恢复到零电平时,计数停止。则计数器所计出的数字即正比于输入电压Vi在T0时间内的平均值,于是完成了一次A/D转换。由于双积分型A/D转换是测量输入电压Vi在T。时间内的平均值,所以对常态干扰(串模干扰)有很强的抑制作用,尤其对正负波形对称的干扰信号,抑制效果更好。双积分型的A/D转换器电路简单,抗干扰能力强,精度高,这是突出的优点。但转换速度比较慢,常用的A/D转换芯片的转换时间为毫秒级。例如12位的积分型A/D芯片ADCETl2B

5、C,其转换时间为lms。因此适用于模拟信号变化缓慢,采样速率要求较低,而对精度要求较高,或现场干扰较严重的场合。例如在数字电压表中常被采用。2)逐次逼近型的A/D转换器逐次逼近型(也称逐位比较式)的A/D转换器,应用比积分型更为广泛,其原理框图如图1所示,主要由逐次逼近寄存器SAR、D/A转换器、比较器以及时序和控制逻辑等部分组成。它的实质是逐次把设定的SAR寄存器中的数字量经D/A转换后得到电压Vc与待转换模拟电压V。进行比较。比较时,先从SAR的最高位开始,逐次确定各位的数码应是“1”还是“0”,其工作过程如

6、下:转换前,先将SAR寄存器各位清零。转换开始时,控制逻辑电路先设定SAR寄存器的最高位为“1”,其余位为“0”,此试探值经D/A转换成电压Vc,然后将Vc与模拟输入电压Vx比较。如果Vx≥Vc,说明SAR最高位的“1”应予保留;如果Vx

7、A/D转换器的位数N决定于SAR的位数和D/A的位数。图3-10(b)表示四位A/D转换器的逐次逼近过程。转换结果能否准确逼近模拟信号,主要取决于SAR和D/A的位数。位数越多,越能准确逼近模拟量,但转换所需的时间也越长。逐次逼近式的A/D转换器的主要特点是:转换速度较快,在1-100/μs以内,分辨率可以达18位,特别适用于工业控制系统。转换时间固定,不随输入信号的变化而变化。抗干扰能力相对积分型的差。例如,对模拟输入信号采样过程中,若在采样时刻有一个干扰脉冲迭加在模拟信号上,则采样时,包括干扰信号在内,都被采

8、样和转换为数字量,这就会造成较大的误差,所以有必要采取适当的滤波措施。(2)A/D转换的重要指标1)分辨率(Resolution):分辨率反映A/D转换器对输入微小变化响应的能力,通常用数字输出最低位(LSB)所对应的模拟n输入的电平值表示。n位A/D能反应1/2满量程的模拟输入电平。由于分辨率直接与转换器的位数有关,所以一般也可简单地用数字量的位数来表示分辨率,即n位二

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。