快速傅里叶变换及其应用实验文档及程序

快速傅里叶变换及其应用实验文档及程序

ID:37762043

大小:218.00 KB

页数:14页

时间:2019-05-30

快速傅里叶变换及其应用实验文档及程序_第1页
快速傅里叶变换及其应用实验文档及程序_第2页
快速傅里叶变换及其应用实验文档及程序_第3页
快速傅里叶变换及其应用实验文档及程序_第4页
快速傅里叶变换及其应用实验文档及程序_第5页
资源描述:

《快速傅里叶变换及其应用实验文档及程序》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、试验二快速傅里叶变换及其应用一、试验目的(1).在理论学习的基础上。加深对FFT的理解,熟悉matlab中的有关函数。(2).应用FFT对典型信号进行频谱分析。(3).了解应用FFT进行信号频谱分析过程中可能出现的问题。(4).应用FFT实现序列的线性卷积和相关。二、实验内容1.观察高斯序列的时域和幅频特性,固定信号xa(n)中参数p=8,改变q的值使q分别等于2、4、8,观察他们的时域和幅频特性,了解当q取不同值时,对信号序列的时域和幅频特性的影响;固定q=8,改变p,使p分别等于8、13、14,观察参数p变化对信号序列的时域和幅频特性的影响,注意p等于多少时会发生明显的泄漏现

2、象,混叠是否也随之出现?记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。(1)固定p=8,使q=2和4的时域和频域图n=0:15x=exp((16*n-n.^2-64)./2)subplot(2,2,1);plot(n,x,'-o')title('时域特性');xlabel('n');ylabel('y(n)')y=abs(fft(x))subplot(2,2,2);stem(n,y,'-o')xlabel('k');ylabel('y(k)')title('幅频特性');x=exp((16*n-n.^2-64)./4)subplot(2,2,3);plot(n,x,'

3、-o')title('时域特性');xlabel('n');ylabel('y(n)')y=abs(fft(x))subplot(2,2,4);stem(n,y,'-o');xlabel('k');ylabel('y(k)')title('幅频特性');使q=8的时域和频域图n=0:15x=exp((16*n-n.^2-64)./8)plot(n,x,'-o')title('时域特性');xlabel('n');ylabel('y(n)')y=abs(fft(x))stem(n,y,'-o')xlabel('k');ylabel('y(k)')title('幅频特性');(2)固

4、定q=8,使q=8和13的时域和频域图n=0:15x=exp((16*n-n.^2-64)./8)subplot(2,2,1);plot(n,x,'-o')title('时域特性');xlabel('n');ylabel('y(n)')y=abs(fft(x))subplot(2,2,2);stem(n,y,'-o')xlabel('k');ylabel('y(k)')title('幅频特性');x=exp((26*n-n.^2-169)./8)subplot(2,2,3);plot(n,x,'-o')title('时域特性');xlabel('n');ylabel('y(n)'

5、)y=abs(fft(x))subplot(2,2,4);stem(n,y,'-o')xlabel('k');ylabel('y(k)')title('幅频特性');使p=14的时域和频域图x=exp((28*n-n.^2-196)./8)plot(n,x,'-o')title('时域特性');xlabel('n');ylabel('y(n)')y=abs(fft(x))stem(n,y,'-o')xlabel('k');ylabel('y(k)')title('幅频特性');实验结果分析:由图形可知,当固定p,q取不同值时,随着q的增大,其相对应的时域幅值会增大,而且容易看出,

6、它们的时域图关于n=8对称。随着q值的增大,q分别等于2、4、8时,同一个n点所对应的幅度逐渐减小,幅度等于或近似等于零的点逐渐增多,这是由于q值的增大,导致时域中的幅值略微增大,但通过DFT变换之后将这种变化放大,使得其在幅频特性中q的影响变大了。时域的乘积对应频域的卷积,所以,加窗后的频谱实际是原信号频谱与矩形窗函数频谱的卷积,卷积的结果使频谱延伸到了主瓣以外,且一直延伸到无穷。可知:其p值固定不变时,q值越小越容易发生泄漏现象,反之,q值越大,越接近其真实图形。当p=13时,x(n)被截断,出现了明显的泄漏,边缘幅度与x1(k)不同,因而带有混叠现象。2观察衰减正弦序列xb

7、(n)的时域和幅频特性,a=0.1,f=0.0625,检查谱峰出现位置是否正确,注意频谱的形状,绘出幅频特性曲线,改变f,使f分别等于0.4375和0.5625,观察这两种情况下,频谱的形状和谱峰出现位置,有无混叠和泄露现象?说明产生现象的原因。f=0.0625的程序n=0:15;a=0.1;f=0.0625;x=exp(-a*n).*sin(2*pi*f*n);plot(n,x,'-o')title('时域特性');xlabel('n');ylabel('y(n)')y=abs

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。