初始点任意的解非线性不等式约束优化问题的结合共轭梯度参数的超记忆梯度广义投影算法

初始点任意的解非线性不等式约束优化问题的结合共轭梯度参数的超记忆梯度广义投影算法

ID:37733326

大小:748.50 KB

页数:13页

时间:2019-05-29

初始点任意的解非线性不等式约束优化问题的结合共轭梯度参数的超记忆梯度广义投影算法_第1页
初始点任意的解非线性不等式约束优化问题的结合共轭梯度参数的超记忆梯度广义投影算法_第2页
初始点任意的解非线性不等式约束优化问题的结合共轭梯度参数的超记忆梯度广义投影算法_第3页
初始点任意的解非线性不等式约束优化问题的结合共轭梯度参数的超记忆梯度广义投影算法_第4页
初始点任意的解非线性不等式约束优化问题的结合共轭梯度参数的超记忆梯度广义投影算法_第5页
资源描述:

《初始点任意的解非线性不等式约束优化问题的结合共轭梯度参数的超记忆梯度广义投影算法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、初始点任意的解非线性不等式约束优化问题的结合共轭梯度参数的超记忆梯度广义投影算法*孙清滢刘新海石油大学应用数学系,山东,东营257061GENERALIZEDSUPER-MEMORYGRADIENTPROJECTIONMETHODWITHARBITRARYINITIALPOINTANDCONJUGATEGRADIENTSCALARFORNONLINEARPROGRAMMINGWITHNONLINEARIN-EQUALITYCONSTRAINTSSunQingying,liuxinhaiDepart.ofAppl

2、iedMathematics,Universityofpetroleum,Dongying,257061AbstractInthispaper,byusinggeneralizedprojectionmatrix,conditionsaregivenonthescalarsinthesuper-memorygradientdirectiontoensurethatthesuper-memorygradientprojectiondirectionisadescentdirection.Ageneralizeds

3、uper-memorygradientprojectionmethodwitharbitraryinitialpointfornonlinearprogrammingwithnonlinearin-equalityconstraintsispresented.Theglobalconvergencepropertiesofthenewmethodarediscussed.Combiningwithconjugategradientscalarwithournewmethod,anewclassofgeneral

4、izedsuper-memorygradientprojectionmethodswithconjugategradientscalarispresented.Thenumericalresultsillustratethatthenewmethodsareeffective.Keywords:Nonlinearprogramming,Generalprojection,Nonlinearin-equalityconstraints,Super-memorygradient,Arbitraryinitialpo

5、int,Convergence关键词:非线性规划,广义投影,非线性不等式约束,超记忆梯度,任意初始点,收敛1.引言梯度投影法是求解非线性约束最优化问题的基本方法之一,在最优化领域占有重要地位[1~6].如高自友在文[3]中建立了求解非线性不等式约束优化问题的计算量小,算法稳定的任意初始点下的广义梯度投影算法,但算法收敛速度慢.超记忆梯度算法是求解无约束规划的有效算法.这类方法在迭代中较多地利用了已经得到的目标函数的某些信息,因而具有较快的收敛速度[7~8].若能将此法推广用于求解约束优化问题,可望改善现有算法的

6、收敛速度.高自友在文[9]建立了求解非线性不等式约束优化问题的超记忆梯度算法.时贞军[10,11]对无约束规划(p)提出了一种参数取值为区间的改进共轭梯度算法,并在水平集有界的条件下证明了算法的收敛性质.受文献[9,10,11]的启发,本文利用广义投影矩阵,对求解无约束规划的超记忆梯度算法中的参数给出一种新的取值范围以保证得到目标函数的超记忆梯度广义投影下降方向,并与处理任意初始点的方法技巧结合建立求解非线性不等式约束优化问题的一个初始点任意的超记忆梯度广义投影算法,并在较弱条件下证明算法的收敛性.同时给出具有

7、好的收敛性质的结合FR,PR,HS共轭梯度参数的超记忆梯度广义投影算法,从而将经典的共轭梯度法推广用于求解约束规划问题.新算法保留梯度广义投影算法的优点,改进了广义梯度投影算法的收敛速度.算法需要较小的存储,适合于大规模非线性不等式约束优化问题的计算.数值例子表明算法是有效的.*国家自然科学基金(10171055)资助项目132.问题与算法考虑问题(p):,其中.记,,,;为维对角矩阵,其主对角元为:本文始终假设:(H1):(H2):为线性无关的向量组,其中.和任何方向,定义:,称为在处关于方向的方向导数.引理

8、1.如果则和任意方向,我们有.由引理1知,,我们不妨记,显然有.引理2.,矩阵正定.,令:,,,其中为阶单位矩阵,我们称为处的广义投影矩阵。引理3.,矩阵的任一特征值满足.对问题(P)的非K-T点,令:,.按以下条件选取参数,:13(1)(2)其中,为常数.条件(1)实质上给出了的一个取值范围,即(3)(i)当时,由(3)得.(ii)当时,由(3)得.由引理3知.因此可取:(4)其中,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。