让孩子学会学习

让孩子学会学习

ID:37719566

大小:24.89 KB

页数:5页

时间:2019-05-29

让孩子学会学习_第1页
让孩子学会学习_第2页
让孩子学会学习_第3页
让孩子学会学习_第4页
让孩子学会学习_第5页
资源描述:

《让孩子学会学习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、让孩子学会学习  一、突出一个中心  以学生为中心,这是课堂教学的灵魂。新课程理念下的学生是学习的主体,是教师引导、组织、合作的对象,教师的教不是最终目的,最终的目的是让学生更好地学。然而在实际教学中,为了完成教学任务,力求课堂教学结构完整,教师往往忽略了这个中心,片面追求完整而舍本逐末。以学生为中心的课堂是孩子主动参与,勇于于质疑,畅所欲言的课堂。在课堂上孩子可以提出“老师我不同意你的方法。”“老师我的方法更简单”“老师我有一点没听懂”。以学生为中心的课堂是教师能够积极关注学生的反应,注意学生行为、情绪的变化,同时顺应变化作出合理调整

2、的课堂。教师就好比会“读心术”,从课前的教学设计开始就在分析学生可能遇到的困难,课堂上通过观察学生的表情、动作揣摩他们是否内心有困惑,随时都在思考着积极有效的应对策略。以学生为中心的课堂是教师和学生相互尊重,充满肯定和鼓励的课堂。像这样的语言经常在教室里回荡:“你刚才的发言真是太精彩了!”“不用害怕,大胆地说出你的想法吧!”“我们大家给某某某打打气,加加油吧!”二、重视思维培养,突出数学特点。 1.、善于运用启发法和发现法,启发学生思维的积极性 以学生为中心,就要找准学生知识的生长点,孩子会的不教,孩子能自己尝试发现的就放手让孩子自己去

3、做,需要引导的才能发现的要精心设计掌握分寸。 如教学义务教育十一册教材中“圆的认识”一课时,直径、半径的概念及其关系可以放手让学生去探索。5教师可以首先要学生拿出一张圆形纸片,让他们将圆纸片对折打开,再对折再打开,如此多次,让学生观察在圆纸片上看到了什么?学生精力陡然集中,都想看看圆纸片上有什么?一生发现:圆纸片上有折痕。另一生又发现:圆纸片上有无数条折痕。老师表扬两生观察仔细。其它学生倍受鼓舞,纷纷发言:圆面上所有折痕相交于一点;折痕两旁的图形完全重合。这时,老师让学生打开课本,看一看交点叫什么?折痕叫什么?学生很快找到了答案并印象深

4、刻。要学习在同一圆中直径和半径的关系了,老师让学生拿出尺子量一量,自己手中的圆纸片和同学手中的圆纸片的直径和半径,看看你还能发现什么?。要画圆了,孩子充满对圆规的好奇心,孩子早已等不及要自己试一试了,老师索性先提出问题让学生先去画,满足他们的好奇心,让学生自己去发现画圆的方法和步骤体会圆心决定远的位置,半径决定圆的大小。整节课,学生的思维都处于兴奋状态之中,人人有动手操作、用眼观察、动口说理、动脑思维的机会,学生自己观察发现问题,积极探索得出结论,教学效果不言而喻。 2、循序渐进,培养学生逻辑思维的能力。逻辑思维能力是人的一种思维形式,

5、它是正确认识事物、掌握知识和创造性地工作所必不可少的能力之一。但是逻辑思维能力并不是与生俱来,培养孩子的逻辑思维能力贯穿了小学六年的数学学习。因而在小学数学教学中,教师要透过有目的、有计划、有系统的教育活动遵守逻辑规律,正确地运用分析比较、直观形象、抽象概括、判断推理等各种思维形式培养学生的逻辑思维能力。首先,由已知到未知,建立有序的概念。新知的学习是建立在旧知的基础之上的,解决一个问题也是从已知条件推导出结果的。例如学习分数的基本性质时我们要先复习除法的商不变的性质和分数与除法的关系,这样学生才能体会因为有了什么才得到什么。通过这样有

6、顺序的教学,有顺序的思考,有顺序的表达,长期的有目的的训练使学生逐步形成数学必备的能力——逻辑思维能力。其次,老师要重视孩子语言表达能力的培养。语言是思维的载体,思维的过程通过语言,来呈现,语言的表达促进思维的发展。在教学中老师要抓住孩子习惯形象思维的特点,多操作,多演示给孩子提供语言表达的材料,帮助孩子完成由形象思维向抽象思维的过度。孩子的学习模仿性很强,老师要经常给孩子提供语言表达的模式如:“因为什么,所以什么。”“我看到什么,发现了什么?”“已知哪两个条件,我求出了什么。”……老师不懈的指导,孩子反复的表达和体会,使孩子明白思维的

7、逻辑关系,不断提高孩子的思维能力3、精心设计教学内容,培养学生的求异思维5  对于小学生来说,既要注意培养他们不盲从,喜欢质疑,打破框框,大胆发表自己意见的品质,又要培养他们敢于求“异”,发展他们的求异思维,进而养成独立思考独立,灵活解决问题,敢于创新的习惯。  如,一位教师教学“乘法意义”的运用一课时,她出示了这样一道加法题:9+9+9+5+9=?让学生用简便方法计算。于是一个学生提出了9×4+5的方法,而另一个学生则提出了“新方案”,建议用9×5-4的方法解。这个学生的思维有创见,这个方案是他自己发现的。在他的思维活动中,他“看见了

8、”一个实际并不存在的9,他假设在5的位置上是一个9,那么就可以把题目先假设为9×5。接着他的思维又参与了论证:9-4才是原题中的实际存在的5。对于这种在别人看不到的问题中发现问题和提出问题,这种创造性思维的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。