Optimal a priori estimates for interface problems

Optimal a priori estimates for interface problems

ID:37658693

大小:337.94 KB

页数:20页

时间:2019-05-27

Optimal a priori estimates for interface problems_第1页
Optimal a priori estimates for interface problems_第2页
Optimal a priori estimates for interface problems_第3页
Optimal a priori estimates for interface problems_第4页
Optimal a priori estimates for interface problems_第5页
资源描述:

《Optimal a priori estimates for interface problems》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、ptimalaprioriestimatesforinterfa eproblemsi haellumandChristianWienersAbstra t.We onsideraprioriestimatesinweightednormsforinterfa eprob-lemswithpie ewise onstantdi usion onstantswhi hdonotdependontheratiobetweenthe onstants.urresultgeneralizesanestimateofemrabettoarbi-trarydimensionsandin l

2、udes urvedboundaries.Furthermore,wedis uss riteriafortheexisten eofauniformoin areestimateinweightednorms.ntheaÆrma-tive aseweobtainarobust niteelementerrorboundinweightednorms.Finally,wepresentnumeri alexperimentsin ludinga asewithnouniformoin are on-stant.Thesolutionofanellipti problemwith

3、smooth oeÆ ientsinadomainissmoothintheinterior,andformany asesallboundarysingularities anbe lassi ed, f.Grisvard[7℄.fthe oeÆ ientsarepie ewisesmooth,regularitygetslostattheinterfa e;nevertheless,forpie ewise onstant oeÆ ientsasingularity lassi ationispossibleforawiderangeofproblems, f.i aise[1

4、2℄forpolygonaldomains.nthis ontext,aprioriestimatesforthesmoothpartofthesolutionarerequired.Here,weareinterestedinestimatesforthesmoothpartofthesolutionwhi hinadditionareindependentofthe oeÆ ientsinappropriateweightednorms,i.e.,inrobustestimates,andwegeneralizetheresultstothe aseofnonpolygonaldo

5、mains.Su hrobustestimatesprovidee.g.robust niteelementerrorestimates,whi hinparti ular,togetherwitharobustsmoothingproperty[10,14℄,leadtoparameter-independentmultigrid onvergen e.1We onsiderthefollowingmodelproblem: ndu2H()su hthat01a(u;v)=(f;v)forallv2H();(1)0d2whereRisaboundedips hitzdomain,f

6、2(),andaistheellipti bilinearformZX[a(u;v)=rurvdx;=;kkk=1k=1kwithnon-overlappingips hitzsubdomainsand onstant oeÆ ients>0.kkWeassumethat,besidestheips hitzproperty,isapie ewisesmoothboundaryk(inthesensethatsome losedmeasure-zerosubsetZexistssu hthatnZkkkk2isC-smooth;apre iseformulati

7、onoftherequirementsisgivenin )inSe tion1).denotestheouterunitnormalon.nnZwe ande nethese ondkkkkfundamentaltensorS(x)(withrespe tto),themean urvatureH(x),andthekkkmaximalprin ipal urvature(x);weassumethatHandare

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。