欢迎来到天天文库
浏览记录
ID:37566276
大小:459.10 KB
页数:43页
时间:2019-05-12
《经典单方程计量经济学模型异方差性》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第四章经典单方程计量经济学模型:放宽基本假定的模型基本假定违背:不满足基本假定的情况。主要包括:(1)随机误差项序列存在异方差性;(2)随机误差项序列存在序列相关性;(3)解释变量之间存在多重共线性;(4)解释变量是随机变量且与随机误差项相关(随机解释变量);此外:(5)模型设定有偏误(6)解释变量的方差不随样本容量的增而收敛计量经济检验:对模型基本假定的检验本章主要学习:前4类§4.1异方差性一、异方差的概念二、异方差的类型三、实际经济问题中的异方差性四、异方差性的后果五、异方差性的检验六、异方差的修正七、案例引子:更为接近真实的
2、结论是什么?根据四川省2000年21个地市州医疗机构数与人口数资料,分析医疗机构与人口数量的关系,建立卫生医疗机构数与人口数的回归模型。对模型估计的结果如下:(291.5778)(0.644284)t=(-1.931062)(8.340265)式中Y表示卫生医疗机构数(个),X表示人口数量(万人)。,模型显示的结果和问题:●人口数量对应参数的标准误差较小●t统计量远大于临界值●可决系数和修正的可决系数结果较好●F检验结果明显显著表明该模型的估计效果不错,可以认为人口数量每增加1万人,平均说来医疗机构将增加5.3735个。然而,这里得
3、出的结论可能是不可靠的,平均说来每增加1万人口可能并不需要增加这样多的医疗机构,所得结论并不符合真实情况。有什么充分的理由说明这一回归结果不可靠呢?更为接近真实的结论又是什么呢?对于模型如果出现即对于不同的样本点,随机误差项的方差不再是常数,而互不相同,则认为出现了异方差性(Heteroskedasticity)。一、异方差的概念方差是度量被解释变量Y的观测值围绕回归线的分散程度,因此同方差性指的是所有观测值的分散程度相同。图形表示:二、异方差的类型同方差性假定:i2=常数f(Xi)异方差时:i2=f(Xi)异方差一般可归结为
4、三种类型:(1)单调递增型:i2随X的增大而增大(2)单调递减型:i2随X的增大而减小(3)复杂型:i2与X的变化呈复杂形式三、实际经济问题中的异方差性例4.1.1:截面资料下研究居民家庭的储蓄行为Yi=0+1Xi+iYi:第i个家庭的储蓄额Xi:第i个家庭的可支配收入高收入家庭:储蓄的差异较大低收入家庭:储蓄则更有规律性,差异较小i的方差呈现单调递增型变化例4.1.2,以绝对收入假设为理论假设、以截面数据为样本建立居民消费函数:Ci=0+1Yi+I将居民按照收入等距离分成n组,取组平均数为样本观测值。一般情况下
5、,居民收入服从正态分布:中等收入组人数多,两端收入组人数少。而人数多的组平均数的误差小,人数少的组平均数的误差大。所以样本观测值的观测误差随着解释变量观测值的不同而不同,往往引起异方差性。例4.1.3,以某一行业的企业为样本建立企业生产函数模型Yi=Ai1Ki2Li3ei被解释变量:产出量Y解释变量:资本K、劳动L、技术A,那么:每个企业所处的外部环境对产出量的影响被包含在随机误差项中。每个企业所处的外部环境对产出量的影响程度不同,造成了随机误差项的异方差性。这时,随机误差项的方差并不随某一个解释变量观测值的变化而呈规律性变
6、化,呈现复杂型。四、异方差性的后果计量经济学模型一旦出现异方差性,如果仍采用OLS估计模型参数,会产生下列不良后果:1、参数估计量非有效OLS估计量仍然具有无偏性,但不具有有效性因为在有效性证明中利用了E(’)=2I而且,在大样本情况下,尽管参数估计量具有一致性,但仍然不具有渐近有效性。2、变量的显著性检验失去意义变量的显著性检验中,构造了t统计量其他检验也是如此。3、模型的预测失效一方面,由于上述后果,使得模型不具有良好的统计性质;所以,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预
7、测精度,预测功能失效。五、异方差性的检验检验思路:由于异方差性就是相对于不同的解释变量观测值,随机误差项具有不同的方差。那么:检验异方差性,也就是检验随机误差项的方差与解释变量观测值之间的相关性及其相关的“形式”。问题在于用什么来表示随机误差项的方差一般的处理方法:几种异方差的检验方法:1、图示法(1)用X-Y的散点图进行判断看是否存在明显的散点扩大、缩小或复杂型趋势(即不在一个固定的带型域中)看是否形成一斜率为零的直线2、帕克(Park)检验与戈里瑟(Gleiser)检验基本思想:偿试建立方程:或选择关于变量X的不同的函数形式,对
8、方程进行估计并进行显著性检验,如果存在某一种函数形式,使得方程显著成立,则说明原模型存在异方差性。如:帕克检验常用的函数形式:或若在统计上是显著的,表明存在异方差性。Glejser检验的步骤(1)用原始数据估计模型,计算残差直接读取
此文档下载收益归作者所有