教学目标教学目标

教学目标教学目标

ID:37548261

大小:61.50 KB

页数:9页

时间:2019-05-25

教学目标教学目标_第1页
教学目标教学目标_第2页
教学目标教学目标_第3页
教学目标教学目标_第4页
教学目标教学目标_第5页
资源描述:

《教学目标教学目标》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、教学目标教学目标教学目标教学目标教学目标教学目标教学目标教学目标教学目标教学目标教学目标教学目标教学目标教学目标教学目标教学目标        1.掌握有关复合函数单调区间的四个引理.        2.会求复合函数的单调区间.        3.必须明确复合函数单调区间是定义域的子集.        教学重点与难点        1.教学重点是教会学生应用本节的引理求出所给的复合函数的单调区间.        2.教学难点是务必使学生明确复合函数的单调区间是定义域的子集.        教学过程设计   

2、     师:这节课我们将讲复合函数的单调区间,下面我们先复习一下复合函数的定义.        生:设y=f(u)的定义域为A,u=g(x)的值域为B,若AÍB,则y关于x函数的y=f[g(x)]叫做函数f与g的复合函数,u叫中间量.        师:很好.下面我们再复习一下所学过的函数的单调区间.        (教师把所学过的函数均写在黑板上,中间留出写答案的地方,当学生回答得正确时,由教师将正确答案写在对应题的下边.)        (教师板书,可适当略写.)        例   求下列函数的单

3、调区间.         1.一次函数y=kx+b(k≠0).         解  当k>0时,(-∞,+∞)是这个函数的单调增区间;当k<0时,(-∞,+∞)是这个函数的单调减区间.         2.反比例函数y=          (k≠0).         解  当k>0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k<0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间.         3.二次函数y=ax2+bx+c(a≠0).         解    当a>1时(-∞

4、,-)是这个函数的单调减区间,(-,+∞)是它的单调增区间;          当a<1时(-∞,-)是这个函数的单调增区间,(-,+∞)是它的单调减区间;         4.指数函数y=ax(a>0,a≠1).         解   当a>1时,(-∞,+∞)是这个函数的单调增区间,当0<a<1时,(-∞,+∞)是这个函数的单调减区间.         5.对数函数y=logax(a>0,a≠1).         解   当a>1时,(0,+∞)是这个函数的单调增区间,当0<a<1时,(0,+∞)

5、是它的单调减区间.         师:我们还学过幂函数y=xn(n为有理数),由于n的不同取值情况,可使其定义域分几种情况,比较复杂,我们不妨遇到具体情况时,再具体分析.         师:我们看看这个函数y=2x2+2x+1,它显然是复合函数,它的单调性如何?         生:它在(-∞,+∞)上是增函数.         师:我猜你是这样想的,底等于2的指数函数为增函数,而此函数的定义域为(-∞,+∞),所以你就得到了以上的答案.这种做法显然忽略了二次函数u=x2+2x+1的存在,没有考虑这个二

6、次函数的单调性.咱们不难猜想复合函数的单调性应由两个函数共同决定,但一时猜不准结论.下面我们引出并证明一些有关的预备定理.         (板书)         引理1   已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f[g(x)]在区间(a,b)上是增函数.         (本引理中的开区间也可以是闭区间或半开半闭区间.)         证明    在区间(a,b)内任取两个数x1,x2

7、,使a<x1<x2<b.         因为u=g(x)在区间(a,b)上是增函数,所以g(x1)<g(x2),记u1=g(x1),u2=g(x2)即u1<u2,且u1,u2∈(c,d).         因为函数y=f(u)在区间(c,d)上是增函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],         故函数y=f[g(x)]在区间(a,b)上是增函数.         师:有了这个引理,我们能不能解决所有复合函数的单调性问题呢?         生:不能.因为并非所有的

8、简单函数都是某区间上的增函数.         师:你回答得很好.因此,还需增加一些引理,使得求复合函数的单调区间更容易些.         (教师可以根据学生情况和时间决定引理2是否在引理1的基础上做些改动即可.建议引理2的证明也是改动引理1的部分证明过程就行了.)         引理2  已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c,d),又函数y=f(u)在区间(c,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。