用样本数字特征分布估计总体数字特征

用样本数字特征分布估计总体数字特征

ID:37508832

大小:1.03 MB

页数:26页

时间:2019-05-12

用样本数字特征分布估计总体数字特征_第1页
用样本数字特征分布估计总体数字特征_第2页
用样本数字特征分布估计总体数字特征_第3页
用样本数字特征分布估计总体数字特征_第4页
用样本数字特征分布估计总体数字特征_第5页
资源描述:

《用样本数字特征分布估计总体数字特征》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.2.2用样本的数字特征估计总体的数字特征在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?问题为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究。——用样本的数字特征估计总体的数字特征。1、众数在一组数据中,出现次数最多的数据叫做这一组数据的众数.2、中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或

2、两个数据的平均数)叫做这组数据的中位数.3、平均数(1)x=(x1+x2+……+xn)/n(2)x=x1f1+x2f2+……xkfk甲在一次射击比赛中的得分如下:(单位:环).7,8,6,8,6,5,9,10,7,5,则他命中的平均数是_____,中位数是众数是_____2.某次数学试卷得分抽样中得到:90分的有3个人,80分的有10人,70分的有5人,60分的有2人,则这次抽样的平均分为______.7.177分练习75,6,7,8众数若有两个或两个以上的数据出现的次数一样,则这些数据都叫众数;若一组数据中

3、每个数据出现的次数一样多,则没有众数。中位数唯一确定的。不受极端值的影响,仅利用了数据中排在中间数据的信息。当样本数据质量比较差,即存在一些错误信息时,应该用抗极端性很强的中位数表示数据的中心值。平均数任何一个样本数据的改变都会引起平均数的改变。如何从频率分布直方图中估计众数、中位数、平均数呢?思考众数:最高矩形的中点的横坐标2.25中位数:左右两边直方图的面积相等.2.02平均数:频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.2.020.160.511.522.533.544.5月均用水量

4、/t频率组距0.08O0.30.440.50.28应该采用平均数来表示每一个国家项目的平均金额,因为它能反映所有项目的信息.但平均数会受到极端数据2200万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习课本P74练习三种数字特征的优缺点特征数优点缺点众数体现了样本数据的最大集中点无法客观反映总体特征中位数不受少数极端值的影响不受少数极端值的影响有时也是缺点平均数与每一个数据有关,更能反映全体的信息.受少数极端值的影响较大,使其在估计总体时的可靠性降低.探究一个企业中,有职工的人数很多,他们的月收入

5、是两千左右,然后有少数人员是经理以上层次的人,他们的月收入是三万左右。如果是你老板,去招聘时,回答有关工资待遇方面的问题,你更愿意用哪个数字特征来回答这个问题呢?如果你是应聘者,你更愿意希望老板是用哪个特征数字来回答?平均数向我们提供了样本数据的重要信息,但是,有时它也会影响我们,使我们对总体作出片面判断。平均数反映数据的集中趋势,但是,只有平均数还难以概况样本数据的实际状态。当样本的平均数相等或相差无几时,就要用样本数据的离散程度来估计总体的数字特征。这时,我们引进了一个概念:标准差!标准差有两位射击运动员

6、在一次射击测试中各射靶十次,每次命中的环数如下:如果你是教练,你应当如何对这次射击情况作出评价?如果这是一次选拔性考核,你应当如何作出选择?标准差标准差是样本数据到平均数的一种平均距离.它用来描述样本数据的离散程度.在实际应用中,标准差常被理解为稳定性.1、平均距离标准差标准差是样本数据到平均数的一种平均距离.它用来描述样本数据的离散程度.在实际应用中,标准差常被理解为稳定性.规律:标准差越大,大则a越大,数据的离散程度越大;反之,数据的离散程度越小.计算标准差的算法:1、算出样本数据的平均数2、算出每个样本

7、数据与样本平均数的差3、算出,这n个数的平均数,即为样本方差4、算出方差的算术平均值,即为样本标准差s。注意:1、标准差、方差的取值范围:当标准差,方差为0时,样本各数据全相等,表明数据没有波动幅度,数据没有离散性。2、因为方差与原始数据的单位不同,且平方后可能增大了偏差的程度,所以虽然方差与标准差在刻画样本数据的离散程度上是一样的,但在解决实际问题时,一般采用标准差。例1:画出下列四组样本数据的直方图,说明它们的异同点.(1)(2)(3)(4)例2:甲乙两人同时生产内径为25.40mm的一种零件.为了对两人

8、的生产质量进行评比,从他们生产的零件中各抽出20件,量得其内径尺寸如下(单位:mm)甲乙从生产的零件内径的尺寸来看,谁生产的质量较高?X甲≈25.401X乙≈25.406s甲≈0.037S乙≈0.068从样本平均数看,甲生产的零件内径比乙更接近内径标准,但是差异很小;从样本标准差看,由于s甲<S乙,因此甲生产的零件内径比乙的稳定程度高很多。于是,可以作出判断,甲生产的零件的质量比乙的高一些。X甲≈2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。