某商场出售某种商品的价格和销售资料如下表

某商场出售某种商品的价格和销售资料如下表

ID:37469739

大小:517.10 KB

页数:48页

时间:2019-05-12

某商场出售某种商品的价格和销售资料如下表_第1页
某商场出售某种商品的价格和销售资料如下表_第2页
某商场出售某种商品的价格和销售资料如下表_第3页
某商场出售某种商品的价格和销售资料如下表_第4页
某商场出售某种商品的价格和销售资料如下表_第5页
资源描述:

《某商场出售某种商品的价格和销售资料如下表》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、某商场出售某种商品的价格和销售资料如下表:等级单价(元/公斤)销售额(万元)一级20216二级16115.2三级1272试求该商品的平均销售价格。平均商品销售价值:(元/公斤)两种不同水稻品种,分别在5个田块上试种,其产量如下:甲品种乙品种田块面积产量田块面积产量(亩)(公斤)(亩)(公斤)1.26001.58401.14951.47701.04451.25400.95401.05200.84200.9450要求:⑴分别计算两品种的单位面积产量。⑵计算两品种亩产量的标准差和标准差系数。⑶假定生产条件相同,确定哪一品种具有较大稳定性,宜于推广。因V乙

2、章抽样估计教学目的与要求抽样估计是抽样调查的继续,它提供了一套利用抽样资料来估计总体数量特征的方法。通过本章的学习,要理解和掌握抽样估计的概念、特点,抽样误差的含义、计算方法,抽样估计的置信度,推断总体参数的方法,能结合实际资料进行抽样估计。本章主要内容抽样推断的一般问题抽样误差抽样估计的方法抽样组织设计一、抽样推断的概念和特点概念抽样推断是按随机原则从全部研究对象中抽取部分单位进行观察,并根据样本的实际数据对总体的数量特征作出具有一定可靠程度的估计和判断。特点它是由部分推断整体的一种认识方法。抽样推断建立在随机取样的基础上。抽样推断运用概率估计的方法。抽样推断的误差可以事先计算并加以控制。

3、第一节抽样推断的一般问题二、抽样推断的内容参数估计参数估计是依据所获得的样本观察资料,对所研究现象总体的水平、结构、规模等数量特征进行估计。假设检验假设检验是利用样本的实际资料来检验事先对总体某些数量特征所作的假设是否可信的一种统计分析方法。三、有关抽样的基本概念(一)总体和样本总体:又称全及总体。指所要认识的研究对象全体。总体单位总数用“N”表示。样本:又称子样。是从全及总体中随机抽取出来,作为代表这一总体的那部分单位组成的集合体。样本单位总数用“n”表示。(二)参数和统计量参数反映总体数量特征的全及指标。参数研究总体中的数量标志总体平均数总体方差X=∑XNX=∑XF∑FΣ(X-X)N2σ

4、=2Σ(X-X)FΣF2σ=2研究总体中的品质标志总体成数成数方差σ2=P(1-P)P=N1N(只有两种表现)(二)参数和统计量参数反映总体数量特征的全及指标。参数研究总体中的数量标志总体平均数总体方差X=∑XNX=∑XF∑FΣ(X-X)N2σ=2Σ(X-X)FΣF2σ=2研究总体中的品质标志总体成数成数方差σ2=P(1-P)P=N1N(只有两种表现)统计量根据样本数据计算的综合指标。研究数量标志样本平均数x=∑xnx=∑xf∑f样本标准差研究品质标志样本成数成数标准差np=n(三)样本容量和样本个数样本容量:一个样本包含的单位数。用“n”表示。一般要求n≥30样本个数:从一个全及总体中可能

5、抽取的样本数目。(四)重复抽样和不重复抽样重复抽样:又称回置抽样。不重复抽样:又称不回置抽样。可能组成的样本数目:N(N-1)(N-2)……(N-n+1)可能组成的样本数目:nN例如:从A、B、C、D四个单位中,抽出两个单位构成一个样本,问可能组成的样本数目是多少?重复抽样AAACADBABBBCBDABCACBCCCDDADBDCDDNn=42=16(个样本)不重复抽样N(N-1)(N-2)…….4×3=12(个样本)第二节抽样误差一、抽样误差的含义由于随机抽样的偶然因素使样本各单位的结构不足以代表总体各单位的结构,而引起抽样指标和全及指标之间的绝对离差。二、影响抽样误差大小的因素1、总体

6、各单位标志值的差异程度2、样本的单位数3、抽样方法4、抽样调查的组织形式三、抽样平均误差抽样平均误差是抽样平均数或抽样成数的标准差,反映了抽样指标与总体指标的平均误差程度。假设总体包含1、2、3、4、5,五个数字。则:总体平均数为x=1+2+3+4+55=3现在,采用重复抽样从中抽出两个,组成一个样本。可能组成的样本数目:25个。如:……..1+32=21+42=2.52+42=33+52=4多数样本指标与总体指标都有误差,误差有大、有小,有正、有负,抽样平均误差就是将所有的误差综合起来,再求其平均数,所以抽样平均误差是反映抽样误差一般水平的指标。抽样平均误差的计算公式抽样平均数的平均误差抽

7、样成数平均误差(以上两个公式实际上就是第四章讲的标准差。但反映的是样本指标与总体指标的平均离差程度)实际上,利用上述两个公式是计算不出抽样平均误差的。想一想,为什么?抽样平均数平均误差的计算方法采用重复抽样:此公式说明,抽样平均误差与总体标准差成正比,与样本容量成反比。(当总体标准差未知时,可用样本标准差代替)(教材P180例题)通过例题可说明以下几点:①样本平均数的平均数等于总体平均数。②抽样平均数的标准差

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。