资源描述:
《光杠杆法测定金属线胀系数实验分析》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、第23卷第1期大学物理实验Vol.23No.12010年2月PHYSICALEXPERIMENTOFCOLLEGEFeb.2010文章编号:100722934(2010)0120030203光杠杆法测定金属线胀系数实验分析胡君辉,李丹,唐玉梅,赵子珍(广西师范大学,广西桂林541004)摘要:在不增加任何实验装置和改变测温系统的条件下,采用降温测量的方法测定了金属线胀系数。比较了升温测量和降温测量的实验结果,并对测量进行了误差分析。结果显示降温测量能有效地解决了升温测量结果偏差太大的问题。关键词:线胀系数;光
2、杠杆;最小二乘法中图分类号:O4233文献标识码:A线胀系数是描述材料受热膨胀的一项重要参l=l0(1+A#t1),l+$l=l0(1+A#ti)(2)数,金属线胀系数的测定是大学物理实验中一个由(2)式中两式相比消去l0,且由于l(ti-t1)>>重要的热学实验。测量金属线胀系数的方法按加$l#t1易得:热方式分为流水加热法、水蒸气加热法、电加热法$lA=(3)l(ti-t1)等;按量测量方式分为:千分表法、组合法、单色光[127]由光杠杆的放大原理有:的劈尖干涉法、光杠杆法、传感器测量法等。目b(ni-n
3、1)前,金属线胀系数测量较为常见的是利用电加热$l=(4)2R待测金属杆,采用水银温度计在多个温度工作点其中,n1和ni分别为温度为t1和ti时从望远下,用尺度望远镜和光杠杆测量金属杆由不同状镜观测到的直尺刻度值并假设ni>n1,b为光杠态温差所引起的长度变化,从而得到金属杆的线杆后足尖到两前足尖连线的垂直距离,R为直尺[2,426]胀系数。文献中一些改进方法虽然提高了实到反射镜的距离。由(3)式和(4)式可得:验结果的精度,但是都需要额外的增加一些新的2RlA2RlAni=ti+n1-t1=Ati+B(5)
4、实验装置,本文在不增加任何实验装置和不改变bb测温系统的条件下,采用降温测量的方法测定了2RlA其中,斜率A=,截距B=金属线胀系数,其结果与公认值符合得很好。b2RlAn1-t1。实验测出一组(ti,ni),由最小二b1实验原理简介Ab乘法线性拟合求出A和B,即可由A=计算得2Rl温度升高时,固体的长度一般由于原子的热Ab到金属线胀系数A(若ni5、t+B#t+,,)(1)式中A,B是和被测物质材料有关的常数,在常温2.1实验方法分析2下可以忽略t及其后的高阶项。为避免测量零实验时一般从室温开始加热待测金属杆,测度时金属的长度,一般假设物体在温度t1e时长量等间距升温时望远镜中标尺的读数ni,并记下度为l,温度升到tie时,其长度增加了$l,则有相应的温度,从而测定金属线胀系数A(以下简称收稿日期:2009211208基金项目:广西师范大学2009年教育教学软件立项项目;广西师范大学2009年本科精品课程项目光杠杆法测定金属线胀系数实验分析31为升温测量
6、)。实际的实验教学中(采用的是点下,升温和降温测得的ni进行算数平均。实验GXC固体线胀系数测定仪),发现这样的测量误前用游标卡尺测量b,用毫米刻度尺测量R和l各差太大,分析其主要原因有两个:一是温控加热功5次,得b=8.000cm,R=180.71cm,=49.82cm,率调节并不能达到在每个测量点上让待测金属杆室温t1=31.2e。达到恒温。这样实验过程中被测金属杆达到热平表1室温至85e之间对金属杆测量的实验数据衡的时间与温度计响应时间不可能完全同步,因温度ti/e升温ni/cm降温ni/cm平均ni/
7、cm而无法测得每个测量点上该温度所对应金属杆的31.24.555.154.85真实长度。二是温度测量方法有缺陷。实验测温35.04.755.355.0540.04.955.555.25时是把水银温度计插入被加热金属杆的中空部分45.05.155.755.45内,温度计的水银泡并没有直接接触到待测金属50.05.355.955.65杆,这样待测金属杆即便已经受热均匀,只要金属55.05.526.185.8560.05.756.336.04杆与其中空部分未达充分的热平衡,温度计的温65.05.956.516.23
8、度示数也非待测金属杆的真实温度,而是金属杆70.06.156.626.39中空部分空气的温度,这必然会带来较大的误差。75.06.396.856.6280.06.657.006.83在不增加任何实验装置和改变测温系统的条85.07.007.167.08件下,采用了降温测量的方法,即将待测金属杆加热到某个温度,然后断开加热开关,让待测金属在表1的数据经线性拟合得到A后根据A=加热筒中自然冷却,然后测量