欢迎来到天天文库
浏览记录
ID:37299953
大小:708.02 KB
页数:4页
时间:2019-05-21
《鲁教版六下第四章-变量之间的关系》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第九章变量之间的关系一理论理解1、若Y随X的变化而变化,则X是自变量Y是因变量。自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。自变量因变量联系1、两者都是某一过程中的变量;2、两者因研究的侧重点或先后顺序不同可以互相转化。区别先发生变化或自主发生变化的量后发生变化或随自变量变化而变化的量2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥平均速度=总路程÷总时间3、若等腰三角形顶角
2、是y,底角是x,那么y与x的关系式为y=180-2x.二、列表法:列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。 三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:
3、1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.九、估计(或者估算)对事物的估计(或者估算)有三种:1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情
4、况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;3.利用关系式:首先求出关系式,然后直接代入求值即可.例1:在一次实验中,小强把—根弹簧的上端固定,在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体的质量x的一组对应值:所挂重量x(kg)012345弹簧长度y(cm)202224262830(1)上述表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂重物为4kg时,弹簧多长?不挂重物呢?(3)若所挂重物为6kg时(
5、在弹簧的允许范围内),你能说出此时弹簧的长度吗?变式1.在日常生活中,我们常常会用到弹簧秤,下表为用弹簧秤称物品时的长度与物品重量之间的关系.伸长长度(cm)024681012挂物重量(kg)0123456如果用y表示弹簧秤的伸长长度,x表示挂物重量,则随着x的逐渐增大,y的变化趋势是怎样的?答:___________________________________________________________当x=3.5时,y=___________;当x=8时,y=_____________.写出x与y之间的关系:____________
6、_______________.变式2.弹簧挂重物后会伸长,测得弹簧长度y(cm)最长为20cm,与所挂物体重量x(kg)间有下面的关系:下列说法不正确的是()A.与都是变量,是自变量,是因变量B.所挂物体为6kg,弹簧长度为11cmC.物体每增加1kg,弹簧长度就增加0.5cmD.挂30kg物体时一定比原长增加15cm例2:果子成熟从树上落到地面,它落下的高度与经过的时间有如下的关系:时间t/秒0.50.60.70.80.91…高度h/米5×0.255×0.365×0.495×0.645×0.815×1…(1)上表反映了哪两个变量之间的关系?
7、哪个是自变量?哪个是因变量?(2)如果果子经过2秒落到地上,那么请估计这果子开始落下时离地面的高度是多少米?变式2--在课堂45分钟内,什么时候学生的接受能力最强?心理学家发现,学生对概念的接受能力与老师提出概念所在的时间(单位:分钟)之间,有如下关系:时间(分钟)0210121314162426接受能力4347.85959.859.959.85947.843(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)根据表中的数据,你认为老师在第_________分钟提出概念比较适宜?说说你的理由专题二:图形表示变量之间的关系例1
8、、如图,是某地某年月平均气温随时间变化的图像.请回答下列问题:(1)二月份平均气温是______,十月份平均气温______;(2)这一年中,月平均气
此文档下载收益归作者所有