欢迎来到天天文库
浏览记录
ID:37285761
大小:472.77 KB
页数:40页
时间:2019-05-20
《matlab曲线拟合 - 非常好非常全面的介绍M拟合的参考资料》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、曲线拟合向导Genial@USTC2004-4-18MathworksTech-Note1508曲线拟合向导1.介绍2.Mathworks产品的曲线拟合特色a.曲线拟合工具箱(CurveFittingToolbox)b.Matlab内建函数与其他的带有曲线拟合能力的附加产品(工具箱)c.线性曲线拟合d.非线性曲线拟合3.加权曲线拟合方法a.曲线拟合工具箱b.统计工具箱c.优化工具箱4.利用曲线拟合工具箱提高曲线拟合结果5.其他的相关资料第1节:简介MATLAB即有内建的解决很多通常遇到的曲线拟合
2、问题的能力,又具有附加这方面的产品。本技术手册描述了几种拟合给定数据集的曲线的方法,另外,本手册还解释了加权曲线拟合、针对复数集的曲线拟合以及其他一些相关问题的拟合技巧。在介绍各种曲线拟合方法中,采用了典型例子的结合介绍。第2节:MathWorks产品的曲线拟合特色MATLAB有可以用于曲线拟合的内建函数。MathWorks公式也提供了很多工具箱可以用于曲线拟合。这些方法可以用来做线性或者非线性曲线拟合。MATLAB也有一个开放的工具箱――曲线拟合工具箱(CurveFittingToolbox)
3、,她可以用于参数拟合,也可以用于非参数拟合。本节将介绍曲线拟合工具箱与其他工具箱、以及各种MATLAB可以用于曲线拟合的内建函数的详细特征。a.曲线拟合工具箱曲线拟合工具箱是专门为数据集合进行曲线拟合而设计的。这个工具箱集成了用MATLAB建立的图形用户界面(GUIs)和M文件函数。曲线拟合向导Genial@USTC2004-4-18•利用工具箱的库方程(例如线性,二次,高阶多项式等)或者是用户自定义方程(局限于用户的想象力)可以进行参数拟合。当你想找出回归系数以及他们背后的物理意义的时候就可以
4、采用参数拟合。•通过采用平滑样条或者其他各种插值方法,你就可以进行非参数拟合。当回归系数不具有物理意义并且不在意他们的时候,就采用非参数拟合方法。曲线拟合工具箱提供了如下功能:•数据回归,譬如截面(?sectioning)与平滑;•标准线性最小二乘拟合,非线性最小二乘拟合,加权最小二乘拟合,约束二乘(constrainedleastsquares)拟合以及稳健(robust)拟合;2•根据诸如R以及误差平方和(SSE)确定的拟合性能的统计特征。请查阅曲线拟合工具箱提供的demos。b.MATLA
5、B内建函数与具有曲线拟合能力的其他工具箱除了曲线拟合工具箱,MATALB与其他工具箱也提供了些可以用于解决线性和非线性曲线拟合的功能。本节列举并解释了其中几个。c.利用MATLAB内建函数进行线性曲线拟合函数描述polyfit用多项式进行数据拟合。polyfit(X,Y,N)对数据X,Y拟合N阶多项式系数,P(X(I))~=Y(I),在最小二乘意义上。反斜线或者矩阵阵左除。如果A是一个方阵,AB基本上与inv(A)*B一致的,是采用的不同计算方式而已。polyval在给定点计算多项式的值co
6、rrcoef计算两个向量的相关系数。它可以与polyfit和polyval函数一起用来2在实际数据和拟合输出之间计算R相关系数2下面给出一个利用corref计算R值的例子:loadcensus[p,s]=polyfit(cdate,pop,2);Output=polyval(p,cdate);Corrolation=corroef(cate,Output);cdate与它自身很好的相关,同样的Output也与它自身很好相关。反对角线上元素是曲线拟合向导Genial@USTC2004-4-18cd
7、ate与Output之间的相关性。这个值非常接近于1,因此实际数据与拟合结果能否较好的吻合。因此,这个拟合是“好”的拟合。(应该是这样判断的么?我怎么觉得应该通过pop与Output的相关性来判断拟合的好坏的呢?)利用反斜线操作符与polyfit函数进行回归与曲线拟合的更多的例子请参照MATLAB文档中的RegressionandCurveFitting一节。附加例子:数据集:t=[0.3.81.11.62.3]';y=[0.50.821.141.251.351.40]';plot(t,y,'o
8、'),gridon方法1:多项式回归基于图形,数据可能通过二次多项式建模如下:y=a0+a1*t+a2*t其中未知系数a0,a1,a2可以通过最小二乘(通过最小化通过模型计算出来的数据的偏差的平方和)拟合计算。三个未知数6个方程如下:用6x3的矩阵表示:X=[ones(size(t))tt.^2];则结果通过反斜线操作符得到:a=Xya=0.53180.9191-0.23872因此二阶多项式模型为:y=0.5318+0.9191*t-0.2387*t曲线拟合向导Genial@USTC2004-
此文档下载收益归作者所有