欢迎来到天天文库
浏览记录
ID:37090103
大小:2.99 MB
页数:56页
时间:2019-05-17
《热电复合材料中两相共存与量子限域的协同作用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、分类号:O469学校代码:10697密级:公开学号:201320528硕士学位论文MASTER’SDISSERTATION热电复合材料中两相共存与量子限域的协同作用学科名称:理论物理作者:陈昊英指导老师:张睿智副教授西北大学学位评定委员会二○一八年Synergyoftwo-phasecoexistenceandquantumconfinementeffectinthermoelectriccompositesAthesissubmittedtoNorthwestUniversityinpartialfulfillmentoftherequirementsforthed
2、egreeofMasterinTheoreticalPhysicsByHaoyingChenSupervisor:RuizhiZhang2018西北大学学位论文知识产权声明书本人完全了解西北大学关于收集、保存、使用学位论文的规定。学校有权保留并向国家有关部门或机构送交论文的复印件和电子版。本人允许论文被查阅和借阅。本人授权西北大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。同时授权中国科学技术信息研究所等机构将本学位论文收录到《中国学位论文全文数据库》或其它相关数据库。保密论文待解密后适用本声明。学位
3、论文作者签名:指导教师签名:年月日年月日--------------------------------------------------------------西北大学学位论文独创性声明本人声明:所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。据我所知,除了文中特别加以标注和致谢的地方外,本论文不包含其他人已经发表或撰写过的研究成果,也不包含为获得西北大学或其它教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。学位论文作者签名:年月日摘要近年来,由于节能与环保的现实要求,能将废弃热能
4、直接转换为电能的热电材料受到人们的广泛关注。热电转换具有无噪音、无污染、可靠性高等优点,是一种绿色环保的发电技术。如能利用热电材料将汽车尾气和工业废气中的废弃热能转换为电能,则既可以有效提高化石燃料的利用效率,节约能源;又可以减少因为化石燃料不完全燃烧产生的气体危害环境。因此热电转换具有广阔的产业化前景。现阶段热电转换大规模应用的瓶颈在于热电材料的性能不佳,即能量转换效率低下。因此,探索高性能热电材料成为世界范围内研究者们广泛关注的问题。复合材料被认为是获得高性能热电材料的一个可行的途径。提高材料的热电性能的可能途径一是降低晶格热导率,二是增大材料的功率因子。目前,实
5、验上制备纳米相的复合材料晶格热导率已接近Cahill理论所预测的最低值。因此,大幅度增大材料的功率因子是进一步提升其热电性能的较好选择。研究者们在复合材料中采用多种机制提高功率因子,包括量子限域效应,能量过滤效应,渗流效应,两相共存效应等。但对于多种效应的协同作用则少有研究。本论文以原子级二维薄膜的面内异质结为研究对象,探索了量子限域效应与两相共存效应的协同作用。首先,在第三章中,用简单的串并联模型研究了两相共存效应增大复合材料功率因子需满足的条件,即两相的功率因子值需接近,但电导率值需相差较大;并指出功率因子增大的物理机制是两相热导率的不同使复合材料具有不均匀的温度
6、分布,因此可以同时具有高电导和高Seebeck系数。然后,在第四章中,采用密度泛函理论和玻尔兹曼输运方程,研究了TiS2二维原子薄膜中量子限域效应对热电功率因子的影响,发现单分子层TiS2的Seebeck系数相比体材料增加约40%,其增大来源于量子限域效应导致的导带底附近能态密度的增大。最后,在第五章中,在前两章工作的基础上,我们将TiS2/MoS2二维面内异质结视为一种低维的复合材料,研究了其中两相共存与量子限域效应的协同作用的机制,给出取得最大的功率因子时,两相的比例以及各自的载流子浓度。本文的计算结果表明,在原子级厚度的二维面内异质结中,量子限域效应和两相共存V
7、I效应可以协同作用,增大二维复合材料的功率因子,并且给出了两相共存和量子效应各自其作用的范围及背后的物理机制。本文的结果对加深二维复合材料物理特性的认识,设计新型二维复合材料具有积极的意义。关键词:热电材料,量子限域,复合材料,二维材料,面内异质结VII西北大学硕士学位论文AbstractThermoelectricmaterialscandirectlyconvertwasteheatenergyintoelectricalenergy.Duetothepracticalrequirementsofenergysavingandenvironmen
此文档下载收益归作者所有