《amethodtolearntheinversekinematicsofmulti-linkrobotsbyevolvingneuro-controllers.》

《amethodtolearntheinversekinematicsofmulti-linkrobotsbyevolvingneuro-controllers.》

ID:37013484

大小:419.70 KB

页数:9页

时间:2019-05-12

《amethodtolearntheinversekinematicsofmulti-linkrobotsbyevolvingneuro-controllers.》_第1页
《amethodtolearntheinversekinematicsofmulti-linkrobotsbyevolvingneuro-controllers.》_第2页
《amethodtolearntheinversekinematicsofmulti-linkrobotsbyevolvingneuro-controllers.》_第3页
《amethodtolearntheinversekinematicsofmulti-linkrobotsbyevolvingneuro-controllers.》_第4页
《amethodtolearntheinversekinematicsofmulti-linkrobotsbyevolvingneuro-controllers.》_第5页
资源描述:

《《amethodtolearntheinversekinematicsofmulti-linkrobotsbyevolvingneuro-controllers.》》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、ARTICLEINPRESSNeurocomputing72(2009)2806–2814ContentslistsavailableatScienceDirectNeurocomputingjournalhomepage:www.elsevier.com/locate/neucomAmethodtolearntheinversekinematicsofmulti-linkrobotsbyevolving$neuro-controllersa,bcJose´AntonioMartı´nH.,JavierdeLope,MatildeSantosaDep.deSist

2、emasInforma´ticosyComputacio´n,UniversidadComplutensedeMadrid,SpainbDepartmentofAppliedIntelligentSystems,UniversidadPolite´cnicadeMadrid,SpaincDep.deArquitecturadeComputadoresyAutoma´tica,UniversidadComplutensedeMadrid,SpainarticleinfoabstractAvailableonline16April2009Ageneralmethodto

3、learntheinversekinematicofmulti-linkrobotsbymeansofneuro-controllersispresented.Wecanfindanalyticalsolutionsforthemostusedandwell-knownrobotsintheliterature.Keywords:InversekinematicsHowever,thesesolutionsarespecifictoaparticularrobotconfigurationandarenotgenerallyapplicableNeuro-evolutio

4、ntootherrobotmorphologies.TheproposedmethodisgeneralinthesensethatitisindependentoftheNeuro-controllersrobotmorphology.ThemethodisbasedontheevolutionarycomputationparadigmandworksMulti-linkrobotsobtainingincrementallybetterneuro-controllers.Furthermore,theproposedmethodsolvessomespecifi

5、cissuesinroboticneuro-controllerlearning:itavoidsanyneuralnetworklearningalgorithmwhichreliesontheclassicalsupervisedinput-targetlearningschemeandhenceitletstoobtainneuro-controllerswithoutprovidingtargets.Itcanconvergebeyondlocaloptimalsolutions,whichisoneofthemaindrawbacksofsomeneura

6、lnetworktrainingalgorithmsbasedongradientdescentwhenappliedtohighlyredundantrobotmorphologies.Furthermore,usinglearningalgorithmssuchastheneuro-evolutionofaugmentingtopologiesitisalsopossibletolearntheneuralnetworktopologywhichisacommonsourceofempiricaltestinginneuro-controllersdesign.

7、Finally,experimentalresultsareprovidedwhenapplyingthemethodtotwomulti-linkrobotlearningtasksandacomparisonbetweenstructuralandparametricevolutionarystrategiesonneuro-controllersisshown.&2009ElsevierB.V.Allrightsreserved.1.Introductionstates.Unfortunatelytheinversekinematicsproblemhas

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签