资源描述:
《数学八年级上人教新课标第12章轴对称复习课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第十二章轴对称小结与复习知识点回顾一、轴对称相关定义和性质二、垂直平分线的性质及判定三、坐标中的轴对称四、等腰三角形的性质及判定五、等边三角形的性质及判定六、作图把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做_对称点_____.一.轴对称图形1、轴对称图形:2、轴对称:轴对称的性质:①关于某直线对称的两个图形是
2、全等形。②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。△ABC与△DEF关于直线L成轴对称,则∠C是多少度?L6507501、线段垂直平分线定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。2、线段垂直平分线性质线段垂直平分线上的点与这条线段的两个端点的距离相等3、垂直平分线的判定二.线段的垂直平分线到线段两个端点距离相等的点,在线段的垂直平分线上。.如图:在△A
3、BC中,DE是AC的垂直平分线,AC=5厘米,△ABD的周长等于13厘米,则△ABC的周长是。ABDEC18厘米5.如图,在Rt△ABC中,∠C=90,DE是AB的垂直平分线,连接AE,∠CAE:∠DAE=1:2,求∠B的度数。AEDBC三.用坐标表示轴对称小结:关于x轴对称:横坐标相等,纵坐标互为相反数.关于y轴对称:横坐标互为相反数,纵坐标相等.点(x,y)关于x轴对称的点的坐标为______.点(x,y)关于y轴对称的点的坐标为______.(x,-y)(-x,y)点(x,y)关于一、三象限角平分线对称坐标(y,x)点(x,y)关于二、四象限角平分线对称点
4、坐标(-y,-x)若两点(x1,y1)、(x2,y2)关于直线y=n对称,则;归纳:若两点(x1,y1)、(x2,y2)关于直线x=m对称,则;y1=y2x1=x2X2=2m-x1y2=2n-y1(m=)(n=)已知点P(2a+b,-3a)与点P’(8,b+2).若点p与点p’关于x轴对称,则a=_____b=_______.若点p与点p’关于y轴对称,则a=_____b=_____四、等腰三角形1.等腰三角形的性质①.等腰三角形的两个底角相等。(等边对等角)②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)2、等腰三角形的判定:如果一个
5、三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)五、等边三角形性质和判定1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600。2、等边三角形的判定:①三个角都相等的三角形是等边三角形。②有一个角是600的等腰三角形是等边三角形。3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。2、“有一个等腰三角形的两条边长分别是4cm和8cm,则周长为20cm3、若等腰三角形的一个角为400,则另外两个角的度数为700,700或400,1000六、作图1、垂直平分线2、作对称点3、在直线上找一点使得到两点距离和最短
6、,距离差最长例:已知△ABC的三个顶点的坐标分别为A(-3,5),B(-4,1),C(-1,3),作出△ABC关于y轴对称的图形。解:点A(-3,5),B(-4,1),C(-1,3),关于y轴对称点的坐标分别为A’(3,5),B’(4,1),C’(1,3).依次连接A’B’,B’C’,C’A’,就得到△ABC关于y轴对称的△A’B’C’.····A31425-2-4-1-3012345-4-3-2-1··cBB’A’C’归纳:(P44)先求出已知图形中的特殊点(如多边形的顶点或端点)的对应点的坐标,描出并连接这些点,就可得到这个图形的轴对称图形.xy1.有A、B
7、、C三个村庄,现准备要建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置。ABC