2014年全国中考数学试卷解析分类汇编专题 操作探究

2014年全国中考数学试卷解析分类汇编专题 操作探究

ID:36985232

大小:216.95 KB

页数:9页

时间:2019-05-04

2014年全国中考数学试卷解析分类汇编专题 操作探究_第1页
2014年全国中考数学试卷解析分类汇编专题 操作探究_第2页
2014年全国中考数学试卷解析分类汇编专题 操作探究_第3页
2014年全国中考数学试卷解析分类汇编专题 操作探究_第4页
2014年全国中考数学试卷解析分类汇编专题 操作探究_第5页
资源描述:

《2014年全国中考数学试卷解析分类汇编专题 操作探究》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、操作探究一选择题1.(2014•佛山,第10题3分)把24个边长为1的小正方体木块拼成一个长方体(要全部用完),则不同的拼法(不考虑放置的位置,形状和大小一样的拼法即为相同的拼法)的种数是()A.5B.6C.7D.8考点:图形的剪拼.分析:根据正方体拼组长方体的方法,可以将24分解质因数,24=2×2×2×3,所以24可以写成:2×12,3×8,4×6,24×1,2×4×3,2×2×6,六种情况.解答:解:24=2×2×2×3所以24可以写成:2×12,3×8,4×6,24×1,2×4×3,2×2×6,6种情况①2×12排列,长宽高分别是12厘米、2厘米、1厘米②3×8排列:长宽高分别是:8

2、厘米、3厘米、1厘米③4×6排列:长宽高分别是:6厘米、4厘米、1厘米④24×1排列:长宽高分别是:24厘米、1厘米、1厘米⑤2×4×3,长宽高分别是:4厘米、3厘米、2厘米⑥2×2×6,长宽高分别是6厘米、2厘米、2厘米答:共有6种不同的拼法,故选:B.点评:此题主要考查了图形的剪拼,利用分类讨论得出是解题关键.二填空题1.(2014•福建漳州,第20题8分)如图,△ABC中,AB=AC,∠A=36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC)(1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等

3、腰三角形的顶角度数分别是度和度;(2)在图2中画2条线段,使图中有4个等腰三角形;第9页共9页(3)继续按以上操作发现:在△ABC中画n条线段,则图中有个等腰三角形,其中有个黄金等腰三角形.考点:作图—应用与设计作图;黄金分割.分析:(1)利用等腰三角形的性质以及∠A的度数,进而得出这2个等腰三角形的顶角度数;(2)利用(1)种思路进而得出符合题意的图形;(3)利用当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形,进而得出规律求出答案.解答:解:(1)如图1所示:∵AB=AC,∠A=36°,∴当AE=BE,则∠A=∠ABE=36°,则∠AEB=1

4、08°,则∠EBC=36°,∴这2个等腰三角形的顶角度数分别是108度和36度;故答案为:108,36;(2)如图2所示:(3)如图3所示:当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形;…∴在△ABC中画n条线段,则图中有2n个等腰三角形,其中有n个黄金等腰三角形.故答案为:2n,n.第9页共9页点评:此题主要考查了应用作图与设计以及等腰三角形的性质,得出分割图形的规律是解题关键.三解答题1.(2014•江西省抚州市,第24题10分)【试题背景】已知:l∥m∥n∥k,平行线l与m、m与n、n与k之间的距离分别为d1、d2、d3,且d1=d3=

5、1,d2=2.我们把四个顶点分别在l、m、n、k这四条平行线上的四边形称为“格线四边形”.【探究1】(1)如图1,正方形ABCD为“格线四边形”,BE⊥l于点E,BE的反向延长线交直线k于点F,求正方形ABCD的边长.【探究2】(2)矩形ABCD为“格线四边形”,其长:宽=2:1,则矩形ABCD的宽为或.(直接写出结果即可)【探究3】如图2,菱形ABCD为“格线四边形”且∠ADC=60°,△AEF是等边三角形,AE⊥k于点E,∠AFD=90°,直线DF分别交直线l、k于点G、点M.求证:EC=DF.【拓展】(4)如图3,l∥k,等边△ABC的顶点A、B分别落在直线l、k上,AB⊥k于点B,且

6、AB=4,∠ACD=90°,直线CD分别交直线l、k于点G、点M、点D、点E分别是线段GM、BM上的动点,且始终保持AD=AE,DH⊥l于点H.猜想:DH在什么范围内,BC∥DE?并说明此时BC∥DE的理由.考点:四边形综合题..分析:(1)证明△ABE≌△BCF,即可求得AE的长,然后利用勾股定理即可求解;(2)过B作BE⊥l于点E,交k于点F,易证△AEB∽△BCF,然后分AB是长和AB第9页共9页是宽两种情况进行讨论求得;(3)连接AC,证明直角△AEC≌直角△AFD即可证得;(4)首先证明AM⊥BC,然后证明Rt△ABE≌Rt△ACD,得到∠BAE=∠CAD,则AM⊥ED,即可证得B

7、C∥DE.解答:解:(1)∵l∥k,BE∥l,∴∠BFC=∠BEA=90°,∴∠ABE+∠BAE=90°,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC.∴∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∴△ABE≌△BCF,∴AE=BF,∵d1=d3=1,d2=2,∴BE=3,AE=1,在直角△ABE中,AB===,即正方形的边长是;(2)过B作BE⊥l于点E,交k于点F.则BE=1,BF=3,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。