欢迎来到天天文库
浏览记录
ID:36846444
大小:3.22 MB
页数:76页
时间:2019-05-16
《基于RBF网络辨识的模型参考自适应控制系统分析与仿真》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、西南交通大学硕士研究生学位论文第1l页AbstractModelreferenceadaptivecontrol(MRAC)isallLmportantadaptivecontr01.Ithadmorematuretheoriesandmethodsofanalysisandsynthesis.Andinpractice,itwasbecomingusedwidely,suchasautopilotoftheaircraft,autopilotsystemoftheship,servosystemofthephotoelectricopticaltrackingtelescope,spe
2、ed—governingsystemofthecontrolledsilicon,controlsystemofthemanipulatorandSOon.However,thetechnicalmeansoftraditionalalgorithmformodelreferenceadaptivecontrolisverylimited.Whenitencountercomplexnonlinearsystems,thedesignandimplementationisverydifficult.Inordertogivefullplaythesuperiorperformanceof
3、modelreferenceadaptivecontrol,andincreasetherobustness,real-time,faulttoleranceofcontrolandtheadaptiveandlearningabilityofcontrolparameters,thepeoplemademodelreferenceadaptivecontrolandneuralnetworks(NNs)upappropriatlytothesystemofmodelreferenceadaptivecontrolbasedontheneuralnetworks.硼舱thesisanal
4、yzedthedesignofthemodelreferenceadaptivecontrolsystem.andusedtheradialbasisfunction(RBF)neuralnetworktothenonlinearsystemidentificationasanidentifierinthecontrolsystem.Firstly,thethesisintroducedthebasictheoriesofthemodelreferenceadaptivecontrolsystem.Then,thethesisintroducedthreeclassicdesignpla
5、nsoftheadaptivecontrollawsandstudiedthesimulationofthreeclassicexamples.ThethesisanalyzedtheRBFneuralnetworkasanidentifierinthecontrolsystem.Furthermore,thethesisimprovedthelearningalgorithmoftheRBFneuralnetworkandobtainedanimprovedK-meansalgorithm.Then,asimulationexampleofsystemidentificationhad
6、beenshown.Finally,theRBFn.euralnetworkidentifierbasedonimprovedK-meanslearningalgorithmhadbeenusedinthesingleneuronPIDmodelreferenceadaptivecontrolsystem.Andasimulationexamplehadbeenanalyzed.Thethesisfocusedonthethesimulationandanalysisofthreekindsofclassicdesignplansofthemodelreferenceadaptiveco
7、ntrolandthesummaryofadvantagesanddisadvantages.Onthisbasis,thethesisintroducedtheneuralnetworkmodelreferenceadaptivecontrolsystemsandimprovedthetrainingalgorithmoftheneuralnetworksidentifier.Finally,thethesisgaveasimul
此文档下载收益归作者所有