基于人工蜂群的模糊聚类数据挖掘算法研究

基于人工蜂群的模糊聚类数据挖掘算法研究

ID:36802111

大小:2.23 MB

页数:64页

时间:2019-05-15

基于人工蜂群的模糊聚类数据挖掘算法研究_第1页
基于人工蜂群的模糊聚类数据挖掘算法研究_第2页
基于人工蜂群的模糊聚类数据挖掘算法研究_第3页
基于人工蜂群的模糊聚类数据挖掘算法研究_第4页
基于人工蜂群的模糊聚类数据挖掘算法研究_第5页
资源描述:

《基于人工蜂群的模糊聚类数据挖掘算法研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、硕士学位论文目录摘要..。。.⋯.⋯.。.。。。.。⋯⋯⋯⋯⋯。....⋯..。.。...⋯......⋯⋯....⋯。。。.。.⋯。..。。.⋯。⋯⋯.⋯..⋯I』jLBSTRACT.......⋯⋯.⋯⋯⋯⋯...⋯......⋯..⋯..⋯.⋯..⋯⋯⋯⋯⋯..⋯⋯⋯⋯⋯⋯⋯..⋯⋯.......II插图索引⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯IV附表索引⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.V第1章绪论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

2、⋯.11.1研究背景和意义⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯l1.2数据挖掘概述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21.2.1数据挖掘概念及其过程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21.2.2数据挖掘的主要算法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯。31.3本文研究内容⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯。61.4本文组织结构⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6第二章模糊聚类算法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯。72.1模糊聚

3、类概述和研究现状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..72.1.1模糊聚类概述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..:⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.72.1.2模糊聚类研究现状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯。82.2常用模糊聚类算法简介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..82.2.1模糊C.均值聚类算法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯82.2.2核模糊C.均值聚类算法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.102.3本章小结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ll第三章基于人工蜂群的模糊聚类算法⋯⋯⋯⋯

4、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯123.1群智能算法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯123。1.1群智能算法简介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.123.1.2几种常见的群智能算法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯123.2人工蜂群算法简介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯163.2.1人工蜂群算法的生物模型⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..163.2.2人工蜂群算法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.173.3基于人工蜂群的模糊聚类算法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯193.

5、3.1基于人工蜂群的FCM(ABFM)算法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯193.3.2基于人工蜂群的KFCM(ABC—KFCM)算法⋯⋯⋯⋯⋯⋯⋯⋯⋯203.3.3实验结果分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯213.4基于BOLTZMANN选择的人工蜂群的模糊聚类算法⋯⋯⋯⋯⋯⋯⋯⋯⋯.25基于人工蜂群的模糊聚类数据挖掘算法研究3.4.1Boltzmann选择机制⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯253.4.2小区间法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯253.4.3基于Boltzmann选择的改进ABFM算法⋯⋯⋯⋯⋯⋯⋯

6、⋯⋯⋯⋯⋯263.4.4基于Boltzmann选择的改进ABC—KFCM算法⋯⋯⋯⋯⋯⋯⋯⋯.273.4.5实验结果⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯273.5本章小结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯30第四章基于拉普拉斯特征映射的TE化工过程模糊聚类算法⋯⋯⋯⋯⋯⋯⋯⋯⋯.314.1TEj立程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..3l4.1.1工艺过程概况⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯314.1.2TE过程故障⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

7、⋯⋯..324.2流行学习简介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯334.3基于拉普拉斯特征映射的ABC.FCM算法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.354.3.1拉普拉斯特征根映射法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯354.3.2基于拉普拉斯特征映射的ABFM算法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯364.4实验结果分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯一364.4.1UCI数据集⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯364.4.2TE数据集⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.374.5本章小结⋯⋯⋯⋯⋯⋯⋯

8、⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯。39结论与展望⋯⋯⋯⋯

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。