《俄歇电子能谱》PPT课件

《俄歇电子能谱》PPT课件

ID:36750246

大小:388.60 KB

页数:46页

时间:2019-05-10

《俄歇电子能谱》PPT课件_第1页
《俄歇电子能谱》PPT课件_第2页
《俄歇电子能谱》PPT课件_第3页
《俄歇电子能谱》PPT课件_第4页
《俄歇电子能谱》PPT课件_第5页
资源描述:

《《俄歇电子能谱》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、俄歇电子能谱(AES)俄歇电子能谱法俄歇电子能谱法是用具有一定能量的电子束(或X射线)激发样品俄歇效应,通过检测俄歇电子的能量和强度,从而获得有关材料表面化学成分和结构的信息的方法。俄歇电子能谱(AES)俄歇电子能谱的基本机理是:入射电子束或X射线使原子内层能级电子电离,外层电子产生无辐射俄歇跃迁,发射俄歇电子,用电子能谱仪在真空中对它们进行探测。1925年法国的物理学家俄歇(P.Auger)在用X射线研究光电效应时就已发现俄歇电子,并对现象给予了正确的解释。1968年L.A.Harris采用微分电子

2、线路,使俄歇电子能谱开始进入实用阶段。1969年,Palmberg、Bohn和Tracey引进了筒镜能量分析器,提高了灵敏度和分析速度,使俄歇电子能谱被广泛应用。俄歇过程和俄歇电子能量WXY俄歇过程示意图WXY跃迁产生的俄歇电子的动能可近似地用经验公式估算,即:俄歇电子俄歇过程至少有两个能级和三个电子参与,所以氢原子和氦原子不能产生俄歇电子。(Z3)孤立的锂原子因最外层只有一个电子,也不能产生俄歇电子,但固体中因价电子是共用的,所以金属锂可以发生KVV型的俄歇跃迁。俄歇电子产额俄歇电子产额或俄歇跃迁

3、几率决定俄歇谱峰强度,直接关系到元素的定量分析。俄歇电子与荧光X射线是两个互相关联和竞争的发射过程。对同一K层空穴,退激发过程中荧光X射线与俄歇电子的相对发射几率,即荧光产额(K)和俄歇电子产额()满足=1-K俄歇电子产额与原子序数的关系由图可知,对于K层空穴Z<19,发射俄歇电子的几率在90%以上;随Z的增加,X射线荧光产额增加,而俄歇电子产额下降。Z<33时,俄歇发射占优势。俄歇分析的选择通常对于Z≤14的元素,采用KLL俄歇电子分析;1442时

4、,以采用MNN和MNO俄歇电子为佳。为什么说俄歇电子能谱分析是一种表面分析 方法且空间分辨率高?大多数元素在50~1000eV能量范围内都有产额较高的俄歇电子,它们的有效激发体积(空间分辨率)取决于入射电子束的束斑直径和俄歇电子的发射深度。能够保持特征能量(没有能量损失)而逸出表面的俄歇电子,发射深度仅限于表面以下大约2nm以内,约相当于表面几个原子层,且发射(逸出)深度与俄歇电子的能量以及样品材料有关。在这样浅的表层内逸出俄歇电子时,入射X射线或电子束的侧向扩展几乎尚未开始,故其空间分辨率直接由入射

5、电子束的直径决定。直接谱与微分谱直接谱:俄歇电子强度[密度(电子数)]N(E)对其能量E的分布[N(E)-E]。微分谱:由直接谱微分而来,是dN(E)/dE对E的分布[dN(E)/dE-E]。俄歇电子能谱示例(Ag的俄歇能谱)石墨的俄歇谱从微分前俄歇谱的N(E)看出,这部分电子能量减小后迭加在俄歇峰的低能侧,把峰的前沿变成一个缓慢变化的斜坡,而峰的高能侧则保持原来的趋势不变。俄歇峰两侧的变化趋势不同,微分后出现正负峰不对称。化学位移效应化学环境的强烈影响常常导致俄歇谱有如下三种可能的变化:(称为化学效

6、应)锰和氧化锰的俄歇电子谱1)俄歇跃迁不涉及价带,化学环境的不同将导致内层电子能级发生微小变化,造成俄歇电子能量微小变化,表现在俄歇电子谱图上,谱线位置有微小移动,这就是化学位移。锰和氧化锰的俄歇电子谱氧化锰540eV587eV636eV锰543eV590eV637eV锰氧化锰2)当俄歇跃迁涉及到价电子能带时,情况就复杂了,这时俄歇电子位移和原子的化学环境就不存在简单的关系,不仅峰的位置会变化,而且峰的形状也会变化。Mo2C、SiC、石墨和金刚石中碳的KLL(KVV或)俄歇谱3)能量损失机理导致的变化

7、将改变俄歇峰低能侧的拖尾峰。由于俄歇电子位移机理比较复杂,涉及到三个能级,不象X射线光电子能谱那样容易识别和分析,并且通常使用的俄歇谱仪分辨率较低,这方面的应用受到了很大的限制。俄歇电子能谱法的应用优点:①作为固体表面分析法,其信息深度取决于俄歇电子逸出深度(电子平均自由程)。对于能量为50eV~2keV范围内的俄歇电子,逸出深度为0.4~2nm。深度分辨率约为1nm,横向分辨率取决于入射束斑大小。②可分析除H、He以外的各种元素。③对于轻元素C、O、N、S、P等有较高的分析灵敏度。④可进行成分的深度

8、剖析或薄膜及界面分析。在材料科学研究中的应用①材料表面偏析、表面杂质分布、晶界元素分析;②金属、半导体、复合材料等界面研究;③薄膜、多层膜生长机理的研究;④表面的力学性质(如摩擦、磨损、粘着、断裂等)研究;⑤表面化学过程(如腐蚀、钝化、催化、晶间腐蚀、氢脆、氧化等)研究;⑥集成电路掺杂的三维微区分析;⑦固体表面吸附、清洁度、沾染物鉴定等。局限性①不能分析氢和氦元素;②定量分析的准确度不高;③对多数元素的探测灵敏度为原子摩尔分数0.1%~1.0%;④电子束

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。