高中数学必修4教案平面向量数量积的坐标表示、模、夹角

高中数学必修4教案平面向量数量积的坐标表示、模、夹角

ID:36746308

大小:126.41 KB

页数:5页

时间:2019-05-14

高中数学必修4教案平面向量数量积的坐标表示、模、夹角_第1页
高中数学必修4教案平面向量数量积的坐标表示、模、夹角_第2页
高中数学必修4教案平面向量数量积的坐标表示、模、夹角_第3页
高中数学必修4教案平面向量数量积的坐标表示、模、夹角_第4页
高中数学必修4教案平面向量数量积的坐标表示、模、夹角_第5页
资源描述:

《高中数学必修4教案平面向量数量积的坐标表示、模、夹角》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、-平面向量数量积的坐标表示、模、夹角教学目的:1.掌握平面向量数量积运算规律;2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.教学重点:平面向量数量积及运算规律.教学难点:平面向量数量积的应用教学过程:一、复习引入:1.平面向量数量积(内积)的定义:2.两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量.1ea=ae=

2、a

3、cos;2abab=03当a与b同向时,ab=

4、a

5、

6、b

7、;当a与b反向时,ab=

8、a

9、

10、b

11、.特别的aa=

12、a

13、

14、2或

15、a

16、aaab4cos=

17、a

18、

19、b

20、;5

21、ab

22、≤

23、a

24、

25、b

26、3.练习:(1)已知

27、a

28、=1,

29、b

30、=2,且(a-b)与a垂直,则a与b的夹角是()A.60°B.30°C.135°D.45°(2)已知

31、a

32、=2,

33、b

34、=1,a与b之间的夹角为3,那么向量m=a-4b的模为()A.2B.23C.6D.12二、讲解新课:探究:已知两个非零向量a(x1,y1),b(x2,y2),怎样用a和b的坐标表示ab?.1、平面两向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和.即abx1x2y1y22.平面内两点间的距离公式(1)设a(x,y)

35、,则

36、a

37、2x2y2或

38、a

39、x2y2.--(2)如果表示向量a的有向线段的起点和终点的坐标分别为(x1,y1)、(x2,y2),

40、a

41、(xx)2(yy)2那么1212(平面内两点间的距离公式)向量垂直的判定设a(x1,y1),b(x2,y2),则abx1x2y1y20--两向量夹角的余弦(0)abx1x2y1y22222cos=

42、a

43、

44、b

45、x1y1x2y2二、讲解范例:例1已知A(1,2),B(2,3),C(2,5),试判断△ABC的形状,并给出证明.例2设a=(5,7),b=(6,4),求a·b及a、b间的夹角θ(精确到1o)分析:为求a与b夹

46、角,需先求a·b及|a|·|b|,再结合夹角θ的范围确定其值.例3已知a=(1,3),b=(3+1,3-1),则a与b的夹角是多少?分析:为求a与b夹角,需先求a·b及|a|·|b|,再结合夹角θ的范围确定其值.解:由a=(1,3),b=(3+1,3-1)有a·b=3+1+3(3-1)=4,|a|=2,|b|=22.ab2记a与b的夹角为θ,则cosθ=ab2又∵0≤θ≤π,∴θ=4评述:已知三角形函数值求角时,应注重角的范围的确定.三、课堂练习:1、P107面1、2、3题12、已知A(3,2),B(-1,-1),若点P(x,-2)在线段AB的中

47、垂线上,则x=.四、小结:1、abx1x2y1y22、平面内两点间的距离公式

48、a

49、(x1x2)2(y1y2)23、向量垂直的判定:设a(x1,y1),b(x2,y2),则abx1x2y1y20--五、课后作业:《习案》作业二十四。思考:1、如图,以原点和A(5,2)为顶点作等腰直角△OAB,使B=90,求点B和向量AB的坐标.解:设B点坐标(x,y),则OB=(x,y),AB=(x5,y2)∵OBAB∴x(x5)+y(y2)=0即:x2+y25x2y=0又∵

50、OB

51、=

52、AB

53、∴x2+y2=(x5)2+(y2)2即:10x+4y=29--7x23x

54、2y25x2y0x12或210x4y2937y1y22由2(7,3)(3,7)(3,7)(7,3)∴B点坐标22或22;AB=22或222在△ABC中,AB=(2,3),AC=(1,k),且△ABC的一个内角为直角,求k值.3解:当A=90时,ABAC=0,∴2×1+3×k=0∴k=2当B=90时,ABBC=0,BC=ACAB=(12,k3)=(1,k3)11∴2×(1)+3×(k3)=0∴k=3313当C=90时,ACBC=0,∴1+k(k3)=0∴k=2-

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。