欢迎来到天天文库
浏览记录
ID:36726531
大小:835.00 KB
页数:36页
时间:2019-05-14
《2016年中考数学试卷分类汇编解析:圆的有关性质》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、圆的有关性质一、选择题1.(2016兰州,7,4分)如图,在⊙O中,点C是的中点,∠A=50º,则∠BOC=()。(A)40º(B)45º(C)50º(D)60º【答案】A【解析】在△OAB中,OA=OB,所以∠A=∠B=50º。根据垂径定理的推论,OC平分弦AB所对的弧,所以OC垂直平分弦AB,即∠BOC=90º−∠B=40º,所以答案选A。【考点】垂径定理及其推论2.(2016兰州,10,4分)如图,四边形ABCD内接于⊙O,四边形ABCO是平行四边形,则∠ADC=()(A)45º(B)50º(C)60º(D)75º【答案】:C【解析】:连接OB,则∠OAB=∠O
2、BA,∠OCB=∠OBC∵四边形ABCO是平行四边形,则∠OAB=∠OBC∴∠ABC=∠OAB+∠OBC=∠AOC∴∠ABC=∠AOC=120º∴∠OAB=∠OCB=60º连接OD,则∠OAD=∠ODC,∠OCD=∠ODC由四边形的内角和等于360º可知,∠ADC=360º-∠OAB-∠ABC-∠OCB-∠OAD-∠OCD∴∠ADC=60º【考点】:圆内接四边形3.(2016·四川自贡)如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是( )A.15°B.25°C.30°D.75°【考点】圆周角定理;三角形的外角性质.【分析】由三角形
3、外角定理求得∠C的度数,再由圆周角定理可求∠B的度数.【解答】解:∵∠A=45°,∠AMD=75°,∴∠C=∠AMD﹣∠A=75°﹣45°=30°,∴∠B=∠C=30°,故选C.【点评】本题主要考查了三角形的外角定理,圆周角定理,熟记圆周角定理是解题的关键4.(2016·四川成都·3分)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为( )A.πB.πC.πD.π【考点】弧长的计算;圆周角定理.【分析】直接利用等腰三角形的性质得出∠A的度数,再利用圆周角定理得出∠BOC的度数,再利用弧长公式求出答案.【解答】解:∵∠OCA=50°,OA=
4、OC,∴∠A=50°,∴∠BOC=100°,∵AB=4,∴BO=2,∴的长为:=π.故选:B.5.(2016·四川达州·3分)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为( )A.B.2C.D.【考点】圆周角定理;锐角三角函数的定义.【分析】作直径CD,根据勾股定理求出OD,根据正切的定义求出tan∠CDO,根据圆周角定理得到∠OBC=∠CDO,等量代换即可.【解答】解:作直径CD,在Rt△OCD中,CD=6,OC=2,则OD==4,tan∠CDO==,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故选:C
5、.6.(2016·四川广安·3分)如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S阴影=( )A.2πB.πC.πD.π【考点】圆周角定理;垂径定理;扇形面积的计算.【分析】根据垂径定理求得CE=ED=2,然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB﹣S△DOE+S△BEC.【解答】解:如图,假设线段CD、AB交于点E,∵AB是⊙O的直径,弦CD⊥AB,∴CE=ED=2,又∵∠BCD=30°,∴∠DOE=2∠BCD=60°,∠ODE=30°,∴OE=DE•cot6
6、0°=2×=2,OD=2OE=4,∴S阴影=S扇形ODB﹣S△DOE+S△BEC=﹣OE×DE+BE•CE=﹣2+2=.故选B.7.(2016·四川乐山·3分)如图4,、是以线段为直径的⊙上两点,若,且,则答案:B解析:∠CAD=∠B=∠D=(180°-40°)=70°,又AB为直径,所以,∠CAB=90°-70°=20°,8.(2016·四川凉山州·4分)已知,一元二次方程x2﹣8x+15=0的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是( )A.2B.8C.2或8D.2<O2O2<8【考点】圆与圆的位置关系;根与系数的关系.【分析】先
7、解方程求出⊙O1、⊙O2的半径,再分两圆外切和两圆内切两种情况讨论求解.【解答】解:∵⊙O1、⊙O2的半径分别是方程x2﹣8x+15=0的两根,解得⊙O1、⊙O2的半径分别是3和5.∴①当两圆外切时,圆心距O1O2=3+5=8;②当两圆内切时,圆心距O1O2=5﹣2=2.故选C.9.(2016•浙江省舟山)把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则的度数是( )A.120°B.135°C.150°D.165°【考点】圆心角、弧、弦的关系;翻折变换(折叠问题).【分析】直接利用翻折变换的性质结合锐角三角函数关系得出∠BOD=3
此文档下载收益归作者所有