欢迎来到天天文库
浏览记录
ID:36725936
大小:62.47 KB
页数:12页
时间:2019-05-14
《奥数.行程.相遇和追及公式》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、实用标准文案相遇和追及问题一.行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系。基本公式:路程=速度×时间速度=路程÷时间时间=路程÷速度 关键问题:确定行程过程中的位置二.相遇甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了A,B之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.相向运动相遇问题的速度和×相遇时间=总路程,即数量关系总路程÷速度和=相遇时间总路程÷相遇时间=速度和三.追及有两
2、个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地追击问题的追及路程=速度差×追及时间,即精彩文档实用标准文案数量关系速度差=追及路程÷追及时间追及时间=追及路程÷速度差【分段提速】环路周长(路程差)÷速度差
3、=相遇时间环路上【同向运动】追击问题环路周长÷相遇时间=速度差数量关系速度差×相遇时间=环路周长速度和×相遇时间=环路周长路程差÷速度差=相同走过的时间往返平均速度=往返总路程÷往返总时间平均速度=总路程÷总时间1、“环形跑道”,也是称为封闭回路,它可以是圆形的、长方形的、三角形的,也可以是由长方形和两个半圆组成的运动场形状。解题时,我们可以运动“转化法”把线路“拉直”或“截断”,从布把物体在“环形路道”上的运动转化为我们熟悉的物体在直线上的运动。2、在行程问题中,与环形有关的行程问题的解决方法与一般行程问题的方法类似,但有两点值得注意:一是两人同地背
4、向运动,从第一次相遇到下一次相遇共行一个全程;而是同地、同向运动时,甲追上乙时甲比乙多行一个行程。环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。 环线型同一出发点直径两端同向:路程差nSnS+0.5S相对(反向):路程和nSnS-0.5S精彩文档实用标准文案比例知识精讲:比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和
5、思维的巧妙性上,使得一道看似很难的题目变得简单明了。比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用来表示,大体可分为以下两种情况:1.当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。相同时间内,速度倍数=路程倍数。,这里因为时间相同,即,所以由得到,,甲乙在同一段时间t内的路程之比等于速度比2.当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体
6、所用的时间之比等于他们速度的反比。路程一定时,时间和速度成反比,这里因为路程相同,即,由得,,甲乙在同一段路程s上的时间之比等于速度比的反比。多次相遇问题:一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“路程=速度×时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1.两地相向出发:第1次相遇,共走1个全程;精彩文档实用标准文案第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除
7、了第1次,剩下的次与次之间都是2个全程。即甲第1次如果走了N米,以后每次都走2N米。2.同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”
8、,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。如果不画图,单凭想象
此文档下载收益归作者所有