《agenericframeworkforspatialpredictionofsoilvariablesbasedonregression-kriging.》

《agenericframeworkforspatialpredictionofsoilvariablesbasedonregression-kriging.》

ID:36668531

大小:1.72 MB

页数:19页

时间:2019-05-13

《agenericframeworkforspatialpredictionofsoilvariablesbasedonregression-kriging.》_第1页
《agenericframeworkforspatialpredictionofsoilvariablesbasedonregression-kriging.》_第2页
《agenericframeworkforspatialpredictionofsoilvariablesbasedonregression-kriging.》_第3页
《agenericframeworkforspatialpredictionofsoilvariablesbasedonregression-kriging.》_第4页
《agenericframeworkforspatialpredictionofsoilvariablesbasedonregression-kriging.》_第5页
资源描述:

《《agenericframeworkforspatialpredictionofsoilvariablesbasedonregression-kriging.》》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、Geoderma120(2004)7593www.elsevier.com/locate/geodermaAgenericframeworkforspatialpredictionofsoilvariables$basedonregression-krigingTomislavHengla,*,GerardB.M.Heuvelinkb,AlfredSteinaaInternationalInstituteforGeo-informationScienceandEarthObservation(IT

2、C),P.O.Box6,7500AAEnschede,TheNetherlandsbLaboratoryofSoilScienceandGeology,WageningenUniversity,P.O.Box37,6700AA,Wageningen,TheNetherlandsReceived27February2003;receivedinrevisedform11July2003;accepted19August2003AbstractAmethodologicalframeworkforsp

3、atialpredictionbasedonregression-krigingisdescribedandcomparedwithordinarykrigingandplainregression.Thedataarefirsttransformedusinglogittransformationfortargetvariablesandfactoranalysisforcontinuouspredictors(auxiliarymaps).Thetargetvariablesarethenfi

4、ttedusingstep-wiseregressionandresidualsinterpolatedusingkriging.Agenericvisualisationmethodisusedtosimultaneouslydisplaypredictionsandassociateduncertainty.Theframeworkwastestedusing135profileobservationsfromthenationalsurveyinCroatia,dividedintointe

5、rpolation(100)andvalidationsets(35).Threetargetvariables:organicmatter,pHintopsoilandtopsoilthicknesswerepredictedfromsixreliefparametersandninesoilmappingunits.Predictionefficiencywasevaluatedusingthemeanerrorandrootmeansquareerror(RMSE)ofpredictiona

6、tvalidationpoints.Theresultsshowthattheproposedframeworkimprovesefficiencyofpredictions.Moreover,itensurednormalityofresidualsandenforcedpredictionvaluestobewithinthephysicalrangeofavariable.Fororganicmatter,itachievedlowerrelativeRMSEthanordinarykrig

7、ing(53.3%versus66.5%).Fortopsoilthickness,itachievedalowerrelativeRMSE(66.5%versus83.3%)andalowerbiasthanordinarykriging(0.15versus0.69cm).ThepredictionofpHintopsoilwasdifficultwithallthreemethods.Thisframeworkcanadoptbothcontinuousandcategoricalsoilv

8、ariablesinasemi-automatedorautomatedmanner.ItopensapossibilitytodevelopabundlealgorithmthatcanbeimplementedinaGIStointerpolatesoilprofiledatafromexistingdatasets.D2003ElsevierB.V.Allrightsreserved.Keywords:Spatialprediction;Logittransformation

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多
相关标签