直驱永磁风力发电机控制策略研究

直驱永磁风力发电机控制策略研究

ID:36634973

大小:390.45 KB

页数:15页

时间:2019-05-13

直驱永磁风力发电机控制策略研究_第1页
直驱永磁风力发电机控制策略研究_第2页
直驱永磁风力发电机控制策略研究_第3页
直驱永磁风力发电机控制策略研究_第4页
直驱永磁风力发电机控制策略研究_第5页
资源描述:

《直驱永磁风力发电机控制策略研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、1引言目前,虽然在整个风力发电系统中,双馈型风力发电系统仍占主流地位,但是直驱型发电机组凭借其固有的优势已经开始越来越受到关注[1]。直驱型风力发电系统采用风轮直接驱动多极低速永磁同步发电机(pmsg)发电,然后通过功率变换电路将电能进行转换后并入电网,省去了传统双馈式风力发电系统中故障率较高的齿轮箱这一部件,系统效率大为提高,有效地抑制了噪声,提高了系统的运行可靠性,因而得到了市场青睐。2直驱型风电机组变流器拓扑结构低压系统中全功率变流器的两种拓扑结构最简形式如图1。对于主动整流拓扑而言,三相电压型逆变器取代了不控整流和升压斩波单元,控制发电机负载转

2、矩,从而实现对电机转速的调节。这种拓扑结构采用双pwm(pulsewidthmodulation)全功率变流器,能够实现对发电机的高性能控制,也避免了不控整流和升压斩波两级结构给系统增加的复杂性,减少了发电机的铜耗和铁耗,并可调节发电机功率因数为1,具有较好的发展前景。鉴于电机侧变流器与电网侧变流器控制策略的侧重点各有不同,本文提出了电机侧变流器和电网侧变流器分开控制的控制方法(系统控制框图如图2所示),可以实现对它的有效控制,从而产生高性能的动态特性。3电机侧变流器控制策略本文通过控制发电机组的转速来实现最大风能跟踪,使发电机转速能跟从不断变化的风速

3、,从风中获取更多的能量:当风速在额定风速以下时,系统进行转速控制的目的是保证机组运行在最大风功率追踪状态下;当实际风速高于额定风速时,受机械强度、发电机容量和变频器容量等限制,必须降低风轮捕获的能量,使功率保持在额定值附近,此时桨距角控制需要起作用,以保证机组保持在额定功率附近。3.1额定风速以下风力机最大功率跟踪算法(mppt)风机输出的功率大小会随着转速的变化而变化。对任意一个风速,都有一个最优转速使得功率最大。因此,风机控制的目标是要控制转速使风机始终运行在输出功率最大点。当桨距角一定时,存在一个最优的叶尖速比λ使得风能利用系数cp最大,也就是使

4、输出功率最大。根据公式,要实现风能的最大功率跟踪,则必须根据风速来调节发电机转速大小,从而维持最优叶尖速比。永磁同步发电机的电磁转矩取决于电动机的定子电流,对于直驱风力发电系统,采用永磁同步发电机,没有增速机构,因此风力机在各种风速下的转速就对应发电机相应的转速,即ω=ωg,(ω是风机转速,ωg为发电机转速),因此要使风力机的转速时刻追随风速保持为该风速下的最优转速,就是使发电机的转子转速跟随风速并保持某风速下的最优转速。发电机转速控制方式需要先检测风速信号,再通过风速—最优转速的关系自寻优找到最优转速,将最优转速作为参考转速输入到电机驱动器中,通过速

5、度闭环系统使发电机达到最优工作点。由于发电机的速度和电磁转矩有着直接的关系,因此可将力矩环节作为速度环节的内环进行设计。对于永磁电机不需要励磁电流,定子电流只产生转矩,在旋转坐标系下,永磁电机的电磁转矩te=1.5pψfiq只与q轴电流相关,而与d轴电流无关,所以力矩环节的控制可以转化为电流环节的控制。于是,只需通过控制q轴电流即可实现发电机转矩转速的控制。速度控制方式是以电流控制为内环,速度控制为外环的闭环控制系统。发电机侧变流器的主要作用是根据实际风速的变化,调节输出电压信号ug和电频率fe。根据永磁电机的矢量控制原理,通过对发电机转子电流矢量的相

6、位和幅值进行控制即可达到调速的目的。从永磁电机的转矩公式可以看出,当永磁体的励磁磁链和直交轴电感确定以后,发电机的转矩便取决于定子电流的空间矢量ig,而ig的大小和相位又取决于id和iq,通过对这两个电流的控制就可以控制发电机的转矩。一定的转速和一定的转矩对应于一定的id和iq,通过对这两个电流的控制,使实际id和iq跟踪指令值i*d和i*q,便实现了发电机和速度的控制。4电网侧变流器控制策略一般电网侧变流器控制系统需要交流电压传感器、交流电流传感器、直流电压传感器来检测控制量和起保护作用,增加了系统成本,使得整流装置体积庞大,同时传感器信号丢失和噪声

7、的干扰都有可能使系统性能降低。为此研究省略传感器控制策略很有必要。本文在传统svpwm方法的基础上采用虚拟磁链来计算角度,无需对交流电压信号进行检测,省去了交流电压传感器,降低了系统成本,减小了装置体积,简化了电路结构。而且对于电网干扰有较强的抑制作用,电网输入电流的畸变较小,系统具有更好的动、静态控制特性。4.1虚拟磁链的概念虚拟磁链的概念由虚拟电机引出,可将电网侧电源(图3中虚线部分)看作一个虚拟的交流“电机”,其中的电阻与电感可分别视为虚拟电机定子电阻和定子漏感。先设三相电网电压平衡,同时忽略进线电抗器和线路电阻r。此时αβ坐标系下的三相vsr的

8、电压方程为:式中为三相vsr交流侧三相电压的α,β分量。将上式的方程两边同时积分可得:式中ψα

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。