基于GABP神经网络模型的期货价格预测与分析

基于GABP神经网络模型的期货价格预测与分析

ID:36622334

大小:62.69 KB

页数:5页

时间:2019-05-13

基于GABP神经网络模型的期货价格预测与分析_第1页
基于GABP神经网络模型的期货价格预测与分析_第2页
基于GABP神经网络模型的期货价格预测与分析_第3页
基于GABP神经网络模型的期货价格预测与分析_第4页
基于GABP神经网络模型的期货价格预测与分析_第5页
资源描述:

《基于GABP神经网络模型的期货价格预测与分析》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、基于GA-BP神经网络模型的期货价格预测与分析 摘要:本文选取2009年1月5日~10月29日的大豆期货主力A1001合约共200个交易数据作为训练数据,10月30日~11月12日的10个数据为测试数据,利用BP神经网络对期货价格建立预测模型,并用遗传算法进行修正,从而实现对大豆期货交易价格的预测分析。结果表明,改进后的GA-BP神经网络模型拟合精度明显高于BP神经网络模型,并对期货价格走势有良好的预测效果,可给期货市场的投资者提供投资建议。此外,利用改进后的模型可对期货市场操纵现象进行预警,对监管者具有一定参考价值。  关键词:期货价格预测BP神经网络遗传算法    引言及文献综述  20世

2、纪以来,我国期货市场得到了长足发展,但相对而言,由于我国期货市场仍处于低级阶段,市场操纵严重,投资者投资理念不科学等问题使市场风险事件不断发生,直接阻碍了中国期货市场走向成熟。诸多风险事件归根结蒂,就是期货价格的波动问题,故分析与预测期货价格变化趋势自然成为期货市场风险控制研究的重中之重,与此同时,了解期货价格走势也有助于帮助投资者降低风险、提高收益,实现金融市场的整体稳定与协调。  国外期货市场起步较早,在期货市场预测的研究和实践方面开展了大量有价值的工作,ShaikhA.Hamid,Zahid5Iqba(2004)用神经网络预测标普500指数期货价格的波动;ShahriarYousefi,

3、IlnaWEinrEIch等(2005)提出一种基于小波变换的预测程序并用来对原油期货进行预测。在我国,学者们也试图通过计量模型对期货价格进行预测:张方杰、胡燕京(2005)的ARMA模型,王习涛(2005)的ARIMA模型,刘轶芳、迟国泰(2006)的GARCH—EWMA的期货价格预测模型、杨熙亮、朱东华、刘怡菲(2006)的BP神经网络模型等都在期货价格预测中得到应用。  总结国内外对期货价格的预测研究,可以发现对期货的预测存在一系列问题,比如:期货数据具有高噪声;各因素之间的相关性错综复杂;期货价格具有非线性特征等等。在这种情况下,人工神经网络方法就显示出其特有的优势,因此本文选择了BP

4、网络模型作为期货短期预测的基本因果模型,并根据实际应用的需要做了创造性的改进。  实证分析  1.变量的选取及数据来源  本文选择大连商品交易所的大豆期货合约为研究对象,作为比较稳定的交易品种,它的走势一定程度上可以反映所在交易所的交易状况,对它的预测情况在一定程度上也可以反映对其交易所其他期货预测的可行性。综合考虑数据可得性、完整性等因素,本文选取2009年1月5日~10月29日的大豆期货主力A1001合约共200个交易数据作为训练数据,10月30日~11月12日的10个数据为测试数据。数据来源于大连商品交易所。5  由于期货价格变化受许多因素的影响,为了尽可能提高预测的准确性,输入变量选择

5、为当日开盘价、当日最高价、当天最低价、当日收盘价、结算价、当日成交量、成交金额以及当日持仓量,总共8个输入量。  2.BP神经网络模型的建立及实现  误差反传模型(BP神经网络模型)可任意逼近非线性函数,其运行过程分为信号的正向传播和误差的反向传播两阶段:第一阶段,将样本从输入层传入,经各隐层处理后,传向输出层。若输出层的实际输出与期望的输出不符,则转入第二阶段,将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,并以此来修正各单元权值。  根据kolmogorov定理,一个三层的BP神经网络足以完成任意的n维到m维的映射,即一般只需要采用一

6、个隐层就足够。隐层节点个数本文采用试凑法确定为20个。为使提高训练精度,本文将初始学习率定为0.05,并采用自适应调节学习率功能,在以后的训练过程中根据训练误差来自动调节学习率。同时,本文选取连续可微的S型正切函数即tansig函数作为传导函数,该函数的可微分性与饱和非线性特性,增强了网络的非线性映射能力。  依据以上模型与参数设定,在matlab中予以实现,结果图1所示,从图中可以看出,对大豆期货价格预测的走势是大致相同的,但是整体误差较大。虽然利用自适应调节学习率来改善收敛情况,但梯度下降的BP算法仍存在较大的局限性。为了改善神经网络的权值调整,所以用遗传算法对BP神经网络进行优化。5  

7、3.模型的改进及实现  遗传算法是一种全局优化搜索算法,其基本思想是首先将问题求解表示成基因型,通过选择,交叉,变异从中选取适应环境的个体,求得问题最优解,有较好的全局搜索性能。将遗传算法运用到神经网络模型,实现了两者的优势互补,发挥了神经网络的广泛映射能力和遗传算法的全局搜索能力,也加快了网络的学习速度,综合提高了整个学习过程中模型的逼近能力和泛化能力。  在MATLAB中运行结果如图2所示,从

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。