sift算法详解及应用

sift算法详解及应用

ID:36605937

大小:3.66 MB

页数:69页

时间:2019-05-09

sift算法详解及应用_第1页
sift算法详解及应用_第2页
sift算法详解及应用_第3页
sift算法详解及应用_第4页
sift算法详解及应用_第5页
资源描述:

《sift算法详解及应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2021/7/251/60尺度不变特征变换匹配算法ScaleInvariantFeatureTransform(SIFT)宋丹109050562021/7/252SIFT简介SIFT算法实现细节提纲SIFT算法的应用领域SIFT算法的扩展与改进2021/7/253SIFT简介传统的特征提取方法成像匹配的核心问题是将同一目标在不同时间、不同分辨率、不同光照、不同位姿情况下所成的像相对应。传统的匹配算法往往是直接提取角点或边缘,对环境的适应能力较差,急需提出一种鲁棒性强、能够适应不同光照、不同位姿等情况下能

2、够有效识别目标的方法。2021/7/2541999年BritishColumbia大学大卫.劳伊(DavidG.Lowe)教授总结了现有的基于不变量技术的特征检测方法,并正式提出了一种基于尺度空间的、对图像缩放、旋转甚至仿射变换保持不变性的图像局部特征描述算子-SIFT(尺度不变特征变换),这种算法在2004年被加以完善。SIFT提出的目的和意义DavidG.LoweComputerScienceDepartment 2366MainMall UniversityofBritishColumbia Va

3、ncouver,B.C.,V6T1Z4,CanadaE-mail:lowe@cs.ubc.caSIFT简介2021/7/255SIFT简介将一幅图像映射(变换)为一个局部特征向量集;特征向量具有平移、缩放、旋转不变性,同时对光照变化、仿射及投影变换也有一定不变性。OriginalimagecourtesyofDavidLowe2021/7/256SIFT简介SIFT算法特点SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性。独特性(Di

4、stinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配。多量性,即使少数的几个物体也可以产生大量SIFT特征向量。经过优化的SIFT算法可满足一定的速度需求。可扩展性,可以很方便的与其他形式的特征向量进行联合。2021/7/257目标的自身状态、场景所处的环境和成像器材的成像特性等因素影响图像配准/目标识别跟踪的性能。而SIFT算法在一定程度上可解决:目标的旋转、缩放、平移(RST)图像仿射/投影变换(视点viewpoint)光照影响(illumination)目标遮挡

5、(occlusion)杂物场景(clutter)噪声SIFT算法可以解决的问题SIFT简介Back2021/7/258SIFT算法实现细节SIFT算法实现步骤简述SIFT算法的实质可以归为在不同尺度空间上查找特征点(关键点)的问题。SIFT算法实现物体识别主要有三大工序,1、提取关键点;2、对关键点附加详细的信息(局部特征)也就是所谓的描述器;3、通过两方特征点(附带上特征向量的关键点)的两两比较找出相互匹配的若干对特征点,也就建立了景物间的对应关系。2021/7/259关键点检测关键点描述关键点匹配消

6、除错配点SIFT算法实现细节SIFT算法实现步骤2021/7/2510所谓关键点,就是在不同尺度空间的图像下检测出的具有方向信息的局部极值点。根据归纳,我们可以看出特征点具有的三个特征:尺度方向大小关键点检测的相关概念1.哪些点是SIFT中要查找的关键点(特征点)?这些点是一些十分突出的点不会因光照条件的改变而消失,比如角点、边缘点、暗区域的亮点以及亮区域的暗点,既然两幅图像中有相同的景物,那么使用某种方法分别提取各自的稳定点,这些点之间会有相互对应的匹配点。2021/7/2511我们要精确表示的物体都

7、是通过一定的尺度来反映的。现实世界的物体也总是通过不同尺度的观察而得到不同的变化。尺度空间理论最早在1962年提出,其主要思想是通过对原始图像进行尺度变换,获得图像多尺度下的尺度空间表示序列,对这些序列进行尺度空间主轮廓的提取,并以该主轮廓作为一种特征向量,实现边缘、角点检测和不同分辨率上的特征提取等。尺度空间中各尺度图像的模糊程度逐渐变大,能够模拟人在距离目标由近到远时目标在视网膜上的形成过程。尺度越大图像越模糊。2.什么是尺度空间(scalespace)?关键点检测的关键点检测的相关概念2021/7

8、/2512根据文献《Scale-spacetheory:Abasictoolforanalysingstructuresatdifferentscales》我们可知,高斯核是唯一可以产生多尺度空间的核,一个图像的尺度空间,L(x,y,σ),定义为原始图像I(x,y)与一个可变尺度的2维高斯函数G(x,y,σ)卷积运算。关键点检测高斯函数尺度是自然存在的,不是人为创造的!高斯卷积只是表现尺度空间的一种形式…关键点检测的相关概念2021/7/2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。