欢迎来到天天文库
浏览记录
ID:36593881
大小:4.71 MB
页数:84页
时间:2019-05-12
《量子场论笔记与习题(Ⅱ)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、教材:M.E.Peskin,D.V.Schroeder,AnIntroductiontoQuantumFieldTheory参考书:L.H.Ryder,QuantumFieldTheoryABrifeReviewandIntroductionⅠ、Review1、经典力学其中:;其中:正则框架:2、量子力学3、相对论量子力学过渡理论①K-GEq:描述spin-zero②DiracEq:描述spin-1/2③MaxwellEq:描述spin-14、量子场论基础Action:其中:Euler-LagrangeEq:MomentumDensityCon
2、jugate:Hamiltonian:;正则量子化:RealScalarField:;其中:;Hamiltonian:场粒子性5、量子电动力学Def:theGaugeDerivative:LocalGaugeTransformation:and5、微扰量子场论;为弱耦合FeynmanDiagram:FeynmanRuleforQED:S-Matrix:QED过程:(1)(2)ComptonScatteringSpinSums:WaldIdentity:Ⅱ、Introductions7、圈图发散重整化8、非阿贝尔规范场理论WeakInteract
3、ionsandStrongInteractionsWeakInteractions:BetaDecay:FourFermionTheory不可重整StrongInteractions:介子理论:(YukawaTheory)弱电统一理论(Weinberg-SalamModel):整理与2011-2-26Chapter6FunctionalMethodsPathIntergralMethods(1-dimensional)时间演化算符:满足:ClassicalPath:猜想:双缝实验:Path1:;;Path1:;;联立两式,可得德布罗意关系:验证
4、:计算积分:展开:利用积分公式:;;;;得:取极限:故而:可使之满足同样的方程和初始条件,因此:整理于2011-3-1推广到多自由度的情况:;;插入中间态:分析两种情况:①:②:FunctionalQuantizationofScalarFieldCorrelationFunctions:Considerthefunctionalformula:Ifthenwehave:Withthecompletenessrelation::Thusweobtainthesimpleformula:整理于2011-3-6FunctionalDerivativ
5、esandGeneratingFunctionalThefunctionalderivativeobeysthebasicaxiom(Infourdimensions):Example:(表面项相当于变分常数)GenerationgFunctionalofcorrelation:Def:Sothat:Thereforethetwo-pointfunctionis:Forfreescalarfield:Therefore:WiththeGaussianintergrationformulae:Wherearematrixes.Thereforet
6、hetwo-pointfunctionshouldbe:Where:def:Wecancheckthese:isnothingbutthetheGreenFunctionoftheKlein-Gordonoperator.Inanotherway,wecancompletethesquarebyintroducingashiftedfield:Usingthesewehave:FreeField:Fortheory:Wherewemake:Forthevertex:整理于2011-3-7QuantizationoftheElectromagne
7、ticField﹡ThedifficutliesofquestinggaugefieldTransformationofthegaugefield:Lagrangianofelectromagnetic:Thereforetheconjugatemomentum:However:sowecannotwritedownthecommutationrelationslike:Pathintergralformula:FourierTransformation:Howeverifwedefine:Thatmeans:Therefore:不可逆。The
8、reforethepropagatorofelectromegneticfieldisnotwelldefined.Faddeev–PopovTric
此文档下载收益归作者所有