基于小波变换的脑电去噪方法研究与实现

基于小波变换的脑电去噪方法研究与实现

ID:36568971

大小:3.72 MB

页数:64页

时间:2019-05-12

基于小波变换的脑电去噪方法研究与实现_第1页
基于小波变换的脑电去噪方法研究与实现_第2页
基于小波变换的脑电去噪方法研究与实现_第3页
基于小波变换的脑电去噪方法研究与实现_第4页
基于小波变换的脑电去噪方法研究与实现_第5页
资源描述:

《基于小波变换的脑电去噪方法研究与实现》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、天津师范大学硕士学位论文基于小波变换的脑电去噪方法研究与实现姓名:修永富申请学位级别:硕士专业:教育技术学指导教师:张桂芸20090301天津师范大学硕士学位论文摘要小波分析是近些年在时频分析领域迅速发展起来的一种新技术,它是一种思想,也是一种算法,目前正在被越来越多的应用于计算机领域,小波的应用研究催生了一批科技成果并有许多已经转化为了生产力。脑电图是当今流行的一种无损伤脑的高级功能探测技术,可以帮助人们更好的了解脑的活动机制、人的认知过程以及用来诊断脑疾病。噪声的去除是进行脑电数据处理的首要环节,本文是在天津市教委和天津师

2、范大学博士基金项目的研究背景下,联合北京师范大学“认知神经科学与学习"国家重点实验室部分老师与在读博士,依托实验室先进的设备条件,将小波技术应用于脑电信号去噪处理,并与傅立叶去噪进行实验比较,体现了应用小波去噪的高效性。通过对大脑的研究有助于促进智力的开发,这对老师进一步了解学生思维状态,提高教学质量大有裨益,同时对促进教育技术学科发展也具有重要意义,本文的主要工作如下:(1)介绍了脑电产生的生理基础、脑电信号的采集方法、脑电的特点、分类、产生原理等相关知识。(2)深入研究了傅立叶变换、小波变换及其性质,并对它们在信号处理上的

3、特点进行了数学上的推导证明,论证了小波变换在非平稳信号处理中比传统的傅立叶变换具有显著的优势。(3)系统研究了基于小波变换的多种信号去噪方法,在理论上分析比较了这些方法的优点与不足。在此基础上,针对脑电信号噪声的特点,本文选用了阈值去噪,以从理论上分析预估此方法良好的去噪效果。(4)成功实现了从脑电信号的采集——数据转化——去噪处理——效果评价整个实验流程,解决了采集软件scan4.3与处理软件matlab7.0的数据格式不统一问题,本文最重要的工作是,对原始采集信号分别用小波变换的阈值法与傅立叶变换进行了去噪,并对去噪效果从

4、信噪比、均方根误差、能量比三个指标上进行了综合评价,每一个指标都显示了小波变换比傅立叶变换在脑电信号去噪上具有更好的效果。关键词:脑电,傅立叶变换,小波变换,信号去噪天津师范大学硕士学位论文AbstractWaveletanalysisisanewtechniqueintimeandfrequencyanalysisdomainrecentyears.ItistheinheritanceanddevelopmentofFourieranalysis,butithasmuchadvancementthanFourieriness

5、ence.Becausewaveletanalysisisrigorousintheory,andithasthefunctionofself-adaptivelocalizationintimeandfrequency,itgetsmoreusedinsignalprocessiondomainandacquiremuchfi'uit.EEGmapiscurrentlyapopularnon-invasivebrainfunctionofadvanceddetectiontechnology.ItCanhelppeopleb

6、etterunderstandthemechanismofthebrainactivity,aswellaspeople’Scognitiveprocessesanddiagnosebraindisease.NoiseremovalforEEGdataprocessingistheprimaryaspect,thisarticleapplywavelettechnologytotheneuralinformationfield,mainlydothetreatmentofEEGde-noising.Atthelast,itis

7、comparedbyFourierde—noising.Thepaper'smainjobisasfollows:1.ThisarticledescribedindetailthephysiologicalbasisofEEGl_acquisitionmethods,EEGcharacteristics,classification,principleandotherrelatedknowledge.2.IhavesmdiedtheFouriertransform,wavelettransformandmeirproperti

8、es,andprovedmeircharacteristicsfrommathaspectinsignalprocessing,demonstratedthatthewavelettransformhasmoresignificantadvantagethanthetradi

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。