欢迎来到天天文库
浏览记录
ID:36552563
大小:480.00 KB
页数:8页
时间:2019-05-12
《初二数学动点问题练习(1)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、动点问题练习题1、(宁夏回族自治区)已知:等边三角形的边长为4厘米,长为1厘米的线段在的边上沿方向以1厘米/秒的速度向点运动(运动开始时,点与点重合,点到达点时运动终止),过点分别作边的垂线,与的其它边交于两点,线段运动的时间为秒.1、线段在运动的过程中,为何值时,四边形恰为矩形?并求出该矩形的面积;CPQBAMN(2)线段在运动的过程中,四边形的面积为,运动的时间为.求四边形的面积随运动时间变化的函数关系式,并写出自变量的取值范围.2、如图,在梯形中,动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终
2、点运动.设运动的时间为秒.(1)求的长.(2)当时,求的值.ADCBMN(3)试探究:为何值时,为等腰三角形.OMANBCyx3、如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(4,3),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).(1)求线段AB的长;当t为何值时,MN∥OC?(2)设△CMN的面积为S,求S与t之间的函数解析式,并指出
3、自变量t的取值范围;S是否有最小值?若有最小值,最小值是多少?(3)连接AC,那么是否存在这样的t,使MN与AC互相垂直?若存在,求出这时的t值;若不存在,请说明理由.2、(河北卷)如图,在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒).(1)设四边形PCQD的面积为y,求y与t的函数关
4、系式;(2)t为何值时,四边形PQBA是梯形?(3)是否存在时刻t,使得PD∥AB?若存在,求出t的值;若不存在,请说明理由;APCQBD(4)通过观察、画图或折纸等方法,猜想是否存在时刻t,使得PD⊥AB?若存在,请估计t的值在括号中的哪个时间段内(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,请简要说明理由.3、(山东济宁)如图,A、B分别为x轴和y轴正半轴上的点。OA、OB的长分别是方程x2-14x+48=0的两根(OA>OB),直线BC平分∠ABO交x轴于C点,P为BC上一动点,P点以每秒1个单位的速度从B点开始沿BC方向移动。(1)
5、设△APB和△OPB的面积分别为S1、S2,求S1∶S2的值;OABCPxy(2)求直线BC的解析式;(3)设PA-PO=m,P点的移动时间为t。①当0<t≤时,试求出m的取值范围;②当t>时,你认为m的取值范围如何(只要求写出结论)?4、在中,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动。过点P作PE∥BC交AD于点E,连结EQ。设动点运动时间为x秒。(1)用含x的代数式表示AE、DE的长度;(2)当点Q在BD(不包括点B、D)上移动时,设的面积为,求与月份的函
6、数关系式,并写出自变量的取值范围;(3)当为何值时,为直角三角形。5、(杭州)在直角梯形中,,高(如图1)。动点同时从点出发,点沿运动到点停止,点沿运动到点停止,两点运动时的速度都是。而当点到达点时,点正好到达点。设同时从点出发,经过的时间为时,的面积为(如图2)。分别以为横、纵坐标建立直角坐标系,已知点在边上从到运动时,与的函数图象是图3中的线段。(1)分别求出梯形中的长度;(2)写出图3中两点的坐标;(3)分别写出点在边上和边上运动时,与的函数关系式(注明自变量的取值范围),并在图3中补全整个运动中关于的函数关系的大致图象。(图3)(图2)(图1)6、
7、(金华)如图1,在平面直角坐标系中,已知点,点在正半轴上,且.动点在线段上从点向点以每秒个单位的速度运动,设运动时间为秒.在轴上取两点作等边.(1)求直线的解析式;(2)求等边的边长(用的代数式表示),并求出当等边的顶点运动到与原点重合时的值;(3)如果取的中点,以为边在内部作如图2所示的矩形,点在线段上.设等边和矩形重叠部分的面积为,请求出当秒时与的函数关系式,并求出的最大值.(图1)(图2)7、两块完全相同的直角三角板ABC和DEF如图1所示放置,点C、F重合,且BC、DF在一条直线上,其中AC=DF=4,BC=EF=3.固定Rt△ABC不动,让Rt△
8、DEF沿CB向左平移,直到点F和点B重合为止.设FC=x,两个三角
此文档下载收益归作者所有