欢迎来到天天文库
浏览记录
ID:36532177
大小:1.60 MB
页数:32页
时间:2019-05-09
《有机小分子荧光探针的研究1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、有机小分子荧光探针的研究什么是荧光探针?荧光探针是建立在光谱化学和光学波导与测量技术基础上,选择性的将分析对象的化学信息连续转变为分析仪器易测量的荧光信号的分子测量装置。荧光探针受到周围环境的影响,使其发生荧光发射发生变化,从而使人们获知周围环境的特征或者环境中存在的某种特定信息荧光分子探针的优点灵敏度高选择性好使用方便成本低不需预处理不受外界电磁场影响远距离发光荧光分子探针的结构荧光分子探针通常由三部分组成:识别基团(receptor)荧光基团(fluorophore)连接体部分(spacer)识别基团决定了探针分子的选择性和特异性,报告基团则决定了
2、识别的灵敏度,而连接体部分则可起到分子识别枢纽的作用。荧光分子探针的设计原理荧光分子探针的设计原理主要有以下几种:键合-信号输出法、置换法和化学计量计法。1、键合-信号输出法荧光连接体识别被分析物信号输出基团基团键合-信号输出法是指将探针中的识别基团和荧光基团通过共价键连接起来设计荧光探针的方法。当识别基团与被分析物结合时会引起荧光基团的化学环境发生变化,通过颜色的改变、光谱的移动、荧光强度的增减等现象来表现,这些变化可被裸眼或者仪器识别。这是目前为止在设计荧光探针中应用最广泛的方法。作为荧光基团的香豆素和作为识别基团的邻氨基苯硫醚以席夫碱相连,加入锌
3、离子后,与硫醚上的硫原子、席夫碱上的氮原子及香豆素上的氧原子配位得到结构2,抑制了席夫碱上C=N键的旋转,实现了荧光从无到有的变化基于键合-信号输出法设计的锌离子荧光探针2、置换法识别基团被分析物识别基团荧光基团结合荧光基团结合被分析物基于置换法设计的荧光探针该原理是利用识别基团分别与荧光基团和被分析物结合能力的不同来实现对被分析物的检测。识别基团和荧光基团形成络合物,当被分析物加入到该体系中时,由于识别基团与被分析物的结合能力要强于识别基团与荧光基团的结合能力,因此被测物将荧光基团置换出来,从而引起了整个体系荧光等化学参数的变化,进而为仪器或者裸眼识
4、别,该原理常用于设计阴离子荧光探针。化合物3以氟硼荧为荧光团修饰了DPA为识别基团,探针本身荧光很强,但与铜离子络合后可形成结构3,从而淬灭了氟硼荧的荧光,加入氰根离子后,由于铜离子与氰根离子的结合常数更大,从而把作为荧光基团的氟硼荧衍生物从络合状态中置换出来得到结构4,使之进入溶液,荧光恢复,而其它的阴离子没有这样的现象,因此可以实现对氰根离子的检测。3、化学计量计法探针分子被分析物新物质A探针分子被分析物中间体新物质B新物质C基于化学计量计设计的荧光探针(I)被分析物和探针分子反应形成了共价化合物;(II)被分析物催化探针分子反应生成两种新物质化学
5、计量计法是利用探针分子和被分析物之间发生的特定化学反应(一般是不可逆反应)来改变探针所处的化学环境,从而对被分析物进行识别的一种方法。根据化学计量计法设计的探针可以称为化学计量计,主要包括两种类型:一、探针分子和被分析物发生化学反应后形成共价化合物(I);二、被分析物催化探针分子反应生成两种新物质(II)。一般而言,基于化学计量计原理设计的荧光分子探针通常具有不可逆性和较好的选择性。基于化学计量计法设计的次氯酸根离子荧光探针根据次氯酸根可以氧化羟胺的特性,设计合成了化合物5,当次氯酸根存在时可氧化羟胺结构,使罗丹明开环,从而形成结构6,最终进一步水解为
6、罗丹明6G本身7,而产生强烈的荧光。而其它氧化性分子没有这样的特性,因此可以实现对水相中次氯酸根的高选择性检测。荧光探针的响应机理荧光分子探针主要有如下几种响应机理:1、光诱导电子转移(PET,photo-inducedelectrontransfer)2、分子内电荷转移(ICT,intramolecularchargetransfer)3、荧光共振能量转移(FRET,fluorescenceresonanceenergytransfer)4、激基缔合物(excimer/exciplex)1光诱导电子转移(PET,photo-inducedelectr
7、ontransfer)光诱导电子转移是指电子给体或电子受体受光激发后,激发态的电子给体与电子受体之间发生电子转移的过程。识别基团与被分析物结合之前,荧光基团受激发,最终被光激发到激发态的电子不能跃迁到基态,使得荧光基团的荧光淬灭。而识别基团与被分析物结合后,PET过程受阻,荧光基团的荧光得以恢复。PET过程可以用前线轨道理论具体解释:当识别基团不存在时,荧光团被光激发后,其最高占据轨道(HOMO)的一个电子跃迁到最低空轨道(LUMO),能够产生荧光;若外来识别基团的HOMO或LOMO轨道介于荧光团两轨道能量之间,此时就可以发生识别基团与荧光团之间的电子
8、转移而导致荧光的猝灭。即PET过程阻止了荧光团的一个电子从激发态到基态的非辐射跃迁途径,降低了
此文档下载收益归作者所有