欢迎来到天天文库
浏览记录
ID:36511279
大小:762.50 KB
页数:7页
时间:2019-05-11
《自适应控制技术》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、模型参考自适应控制系统模型参考自适应系统是比较常用的自适应系统,对于这类系统,人们已经提出了许多的设计方法,有的比较成熟,有的还正在发展,尚待完善。从工程实施的观点出发,希望设计出的系统能在性能和复杂程度之间取得较好的权衡。为了简化适应系统,希望所确定的自适应规律,无需直接求解线性或非线性方程。因此,2模型参考自适应系统的设计问题看做是系统的参数或状态平衡位置而进行自动调整的问题。1模型参考自适应控制系统典型结构模型参考自适应控制系统有参考模型、可调系统和自适应机构3部分组成,常见的一种典型结构如下图所示。由四部分组成:u带有未知
2、参数的被控对象假设被控对象的结构已知。对于线性系统,这意味着系统的极点数和零点数是已知的,但它们的位置是未知的。u参考模型(它描述控制系统的期望的输出)Ø应当能反映控制任务中的指定的性能;Ø规定的理想性态应当是自适应控制系统可以达到的,即当给定对象模型结构后,对参考模型的结构有一些特有的限制(如阶数和相对阶)。u带有可校正参数的反馈控制律Ø可以得到一族控制器;Ø应当具有“完全的跟踪能力”,达到跟踪收敛,即当被控对象的参数精确已知时,相应的控制律应当使系统的输出与参考模型的输出相等;Ø现有的自适应控制设计通常要求控制器参数线性化。如
3、果控制规律中可调整的参数是线性的,则称控制器是参数线性化的。u校正参数的自适应机制Ø能保证当参数变化时系统稳定并使得跟踪误差收敛到零;Ø设计方法有李雅普诺夫定理,超稳定性理论,耗散理论等。2质量未知的模型参考自适应控制图1.2一个非线性质量一阻尼—弹簧系统图1.2中的质量一阻尼—弹簧系统,其动力学方程为其中,表示非线性耗散式阻尼,而代表非线性弹簧。考查用电动机力控制一个质量为的质点在没有摩擦的表面上运动,其性态可以描述为(1.1)假设给控制系统发出定位指令。用下面的参考模型给出受控物体对外部指令的理想响应(1.2)其中,正常数和反
4、映指定的性能,在理想情况下,物体应当像质量—弹簧—阻尼系统一样运动到指定的位置。若质量精确已知,可以用下面的控制律实现完全跟踪其中,表示跟踪误差,是一个严格大于零的数。由这个控制器可以得到按指数收敛的误差系统现在假设质量不是精确已知的。可以用下面的控制律(1.3)其中,表示可以校正的参数。将这个控制律带入对象动态中,得到闭环误差动态(1.4)其中,是组合跟踪误差,定义为(1.5)信号量定义为参数估计误差定义为方程(1.4)表明组合跟踪误差与参数误差通过一个稳定滤波器相关联。的参数更新规律(1.6)其中正常数称为自适应增益。注:参数
5、的校正是基于系统的信号,自适应控制系统具有非线性本质,从而控制器(1.3)也是非线性的。仿真分析:设物体的真实质量是,选择零作为的初值,这表明预先不知道真实质量。自适应增益为,分别选择其他设计参数为,,。图1.3跟踪性能和未知质量参数的估计,图1.4跟踪性能和未知质量参数的估计,图1.3表示位置指令为初始条件为,的仿真结果。图1.4表示期望位置是正弦函数的仿真结果。两种情形下位置跟踪误差均收敛到零,而只有后一种情形参数误差趋于零。3模型参考自适应控制方法(MRAC)和自校正控制方法(STC)的关系STCMRAC更新参数是为了使得输
6、入—输出数据3.0之间的拟合误差最小更新参数是为了使得被控对象和参考模型之间的跟踪误差最小具有更高的灵活性,可以将不同的估计器和控制器耦合起来(即估计和控制分离)控制律和自适应律的选择相对复杂一般很难保证自校正控制器的稳定性和收敛性。通常要求系统的信号足够丰富,才能使得参数估计值收敛到真实值,才能保证系统的稳定性和收敛性。不管信号充足与否,系统的稳定性和跟踪误差的收敛性通常是可以保证的从随机调节问题的研究中演化而来从确定自动伺服系统的最优控制中发展起来的通常用于离散时间系统一般用于连续时间系统4一阶系统的自适应控制讨论一阶系统的自
7、适应控制。过程可以近似地表示为一阶微分方程(4.5)其中,是系统输出,是输入,和是系统参数。(1)问题描述在自适应控制中,假定系统参数和是未知的。所期望的自适应系统的性态设为一阶参考模型(4.6)其中,和是常数,是有界的外部参考信号。参数要求是严格正的,也选为严格正数。参考模型可以用它的传递函数表示为其中且是拉普拉斯变量。注意到是严正实函数。自适应控制的目的:寻找控制规律和自适应规律,使得模型的跟踪误差渐近地收敛到零。需要假设参数的符号已知(2)控制律的选择一阶模型参考自适应控制系统选择如下控制律(4.7)其中和是时变反馈增益。闭
8、环系统为(4.8)目标是使得系统可能实现精确模型匹配。如果被控对象参数已知,那么选择下面的控制参数(4.9)则相应的闭环系统为它和参考模型动态相同,从而有零跟踪误差。(3)自适应律的选择记跟踪误差为参数误差定义为自适应律提供的控制器参数与理想参数的
此文档下载收益归作者所有