欢迎来到天天文库
浏览记录
ID:36448194
大小:763.77 KB
页数:18页
时间:2019-05-10
《2018年度5-2018年度8全国高考理科解析汇报几何高考题总汇编》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、实用标准文案2015-2017高考解析几何汇编017(一)10.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则
2、AB
3、+
4、DE
5、的最小值为A.16B.14C.12D.102017(一)20.(12分)已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.2017(二)9.若双曲线(,)的一条渐近线被圆所截得的弦长为2,则的离心
6、率为A.2B.C.D.2017(二)20.(12分)设O为坐标原点,动点M在椭圆C:上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;(2)设点Q在直线上,且.证明:过点P且垂直于OQ的直线l过C的左焦点F.2017(三)10.已知椭圆C:,(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2精彩文档实用标准文案为直径的圆与直线相切,则C的离心率为A.B.C.D.2017(三)20.(12分)已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程
7、.2017(天津)(5)已知双曲线的左焦点为,离心率为.若经过和两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A)(B)(C)(D)2017(天津)(19)(本小题满分14分)设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点,到抛物线的准线的距离为.(I)求椭圆的方程和抛物线的方程;(II)设上两点,关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点.若的面积为,求直线的方程.2016(二)(11)已知F1,F2是双曲线E的左,右焦点,点M在E上,MF1与精彩文档实用标准文案轴垂直,sin,则E的离心率为(A)(B)(C)(D)22016(二)(20)(本小题满分12
8、分)已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(I)当t=4,时,求△AMN的面积;(II)当时,求k的取值范围.2016(北京)19.(本小题14分)已知椭圆C:()的离心率为,,,,的面积为1.(1)求椭圆C的方程;(2)设的椭圆上一点,直线与轴交于点M,直线PB与轴交于点N.求证:为定值.2016(一)(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知
9、AB
10、=,
11、DE
12、=,则C的焦点到准线的距离为(A)2(B)4(C)6(D)82016(一)20.(本小题满分12分)设圆的圆心为A,直线l
13、过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.精彩文档实用标准文案(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.2016(三)(11)已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(A)(B)(C)(D)2016(三)(20)(本小题满分12分)已知抛物线C:的焦点为F,平行于x轴的两条直线
14、分别交C于A,B两点,交C的准线于P,Q两点.(I)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(II)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.2015(二)(11)已知A,B为双曲线E的左,右顶点,点M在E上,∆ABM为等腰三角形,且顶角为120°,则E的离心率为(A)√5(B)2(C)√3(D)√22015(二)20.(本小题满分12分)已知椭圆C:,直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M。(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此
15、时l的斜率;若不能,说明理由。精彩文档实用标准文案2015(一)(5)已知M(x0,y0)是双曲线C:上的一点,F1、F2是C上的两个焦点,若<0,则y0的取值范围是(A)(-,)(B)(-,)(C)(,)(D)(,)2015(一)(20)(本小题满分12分)在直角坐标系xoy中,曲线C:y=与直线(>0)交与M,N两点,(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;(Ⅱ)y轴上是否存在点P,使得当k变动
此文档下载收益归作者所有