资源描述:
《基于小波分析的故障诊断算法》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、word完美格式基于小波分析的故障诊断算法前言:小波变换是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的“时间-频率”窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,因此,小波变换在许多领域都得到了成功的应用,特别是小波变换的离散数字算法已被广泛用于许多问题的变换研究中。从此,小波变换越来越引起人们的重视,其应用领域来越来越广泛。在实际的信号处理过程中,尤其是对非平稳信号的处理中,信号在任一时刻附近的频域特征都很重要。如在故障诊断中,故障点(机械故障
2、、控制系统故障、电力系统故障等)一般都对应于测试信号的突变点。对于这些时变信号进行分析,通常需要提取某一时间段(或瞬间)的频率信息或某一频率段所对应的时间信息。因此,需要寻求一种具有一定的时间和频率分辨率的基函数来分析时变信号。小波变换继承和发展了短时傅里叶变换的局部化思想,并且克服了其窗口大小和形状固定不变的缺点。它不但可以同时从时域和频域观测信号的局部特征,而且时间分辨率和频率分辨率都是可以变化的,是一种比较理想的信号处理方法。小波分析被广泛应用于信号处理、图像处理、语音识别、模式识别、数据压缩、故障诊断、量子物理等应用领域中。小波分析在故障诊断中应用进展1)基于小波信号分
3、析的故障诊断方法?基于小波分析直接进行故障诊断是属于故障诊断方法中的信号处理法。这一方法的优点是可以回避被诊断对象的数学模型,这对于那些难以建立解析数学模型的诊断对象是非常有用的。具体可分为以下4种方法:①利用小波变换检测信号突变的故障方法连续小波变换能够通过多尺度分析提取信号的奇异点。基本原理是当信号在奇异点附近的Lipschitz指数α>0时,其连续小波变换的模极大值随尺度的增大而增大;当α<0时,则随尺度的增大而减小。噪声对应的Lipschitz指数远小于0,而信号边沿对应的Lipschitz指数大于或等于0。因此,利用小波变换可以区分噪声和信号边沿,有效地检测出强噪声背
4、景下的信号边沿(奇变)。动态系统的故障通常会导致系统的观测信号发生奇异变化,可以直接利用小波变换检测观测信号的奇异点,从而实现对系统故障的检测。比如根据输油管泄漏造成的压力信号突变的特点,用小波变换检测这些突变点,实现输油管道的泄漏点诊断。②观测信号频率结构变化的故障诊断方法?精心整理学习帮手word完美格式小波多分辨率分析能够描述信号的频谱随时间变化情况或信号在某时刻附近的频率分布。系统故障由于产生原因不同,通常具有不同的频率特征。利用小波变换尺度与频率的对应关系,分析观测信号的频率结构特点,可以有效地检测系统的故障。有人利用多分辨率分析获得系统状态信号奇异值特征矩阵,并根据
5、相应的故障检测算法,实现对系统故障检测,该方法成功实现对某一武器平台上的精密弹簧阻尼器的故障检测。有研究者提出了利用Mallet塔式算法实现对系统的多故障检测,将观测信号进行多尺度分解,获得故障在不同尺度下的特征,进而实现故障区分,利用该方法实现对某一电网上不同故障的区分。③基于系统脉冲响应函数小波变换的故障方法系统故障导致系统结构和传递函数发生变化,其脉冲响应函数也必然发生变化,这一变化可以由少数几个小波变换系数反映出来。通常这些小波变换系统中只有少数几个元素具有较大的模,其余元素的模都非常小,以系统的状态为参照,根据系统待检状态下辨识得到的这几个元素或其平均值随时间的变化
6、情况,就可以判断有无故障。④利用小波变换去噪提取系统波形特征的诊断方法?小波变换可以看作一个带通滤波器,从而可以对信号进行滤波。近年来,已经出现了很多基于小波变换的去噪方法。Mallat提出了通过寻找小波变换系数中的局部极大值点,并据此重构信号,可以很好地逼近未被噪声污染前的信号。Donoho也提出了一种新的基于阈值处理思想的小波去噪技术。利用去噪后的信号可以直接对系统进行故障诊断,也可利用此信号进行残差分析。通过去噪获得系统输出信号来进行故障诊断,方法上比较简单,但对故障的判断受限于观测人员自身的经验。某期刊文献中提出了基于小波变换的含噪系统辨识方法,利用噪声和信号在小波变换
7、下的不同特性达到消噪目的,直接对含噪声的数据进行小波变换来实现系统辨识。2)小波变换与模式识别相结合的故障诊断方法在故障诊断过程中,对于那些使系统输出发生明显变化的故障,利用小波变换能够有效检测出。但是,当故障的程度很小时,使用小波变换所得的可视信息是有限的,这些信息用于故障检测是困难的。某些研究员提出了利用模式识别中的统计相似性分析的方法进行故障特征提取与诊断,信号检测值与样板之间的相似性是通过二者之间的距离来实现的。直接使用小波变换的小波系数的所有值作为特征矢量是不现实的,因此必须进