欢迎来到天天文库
浏览记录
ID:36293738
大小:379.85 KB
页数:17页
时间:2019-05-08
《2016年贵州省黔东南州中考数学试卷(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2016年贵州省黔东南州中考数学试卷参考答案与试题解析 一、选择题(每个小题4分,10个小题共40分)1.﹣2的相反数是( )A.2B.﹣2C.D.﹣【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A. 2.如图,直线a∥b,若∠1=40°,∠2=55°,则∠3等于( )A.85°B.95°C.105°D.115°【考点】平行线的性质.【分析】根据平行线的性质得出∠4=∠3,然后根据三角形外角的性质即可求得∠3的度数.【解答】解:∵直线a∥b,∴∠4=
2、∠3,∵∠1+∠2=∠4,∴∠3=∠1+∠2=95°.故选B. 3.已知一元二次方程x2﹣2x﹣1=0的两根分别为m、n,则m+n的值为( )A.﹣2B.﹣1C.1D.2【考点】根与系数的关系.【分析】根据一元二次方程的系数结合根与系数的关系即可得出m+n的值,由此即可得出结论.【解答】解:∵方程x2﹣2x﹣1=0的两根分别为m、n,∴m+n=﹣=2.第17页(共17页)故选D. 4.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为( )A.2B.3C.D.2【考点】菱形的性质.
3、【分析】首先根据菱形的性质知AC垂直平分BD,再证出△ABC是正三角形,由三角函数求出BO,即可求出BD的长.【解答】解:∵四边形ABCD菱形,∴AC⊥BD,BD=2BO,∵∠ABC=60°,∴△ABC是正三角形,∴∠BAO=60°,∴BO=sin60°•AB=2×=,∴BD=2.故选:D. 5.小明在某商店购买商品A、B共两次,这两次购买商品A、B的数量和费用如表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物4393第二次购物66162若小丽需要购买3个商品A和2个商品B,则她要花费( )A.64元
4、B.65元C.66元D.67元【考点】二元一次方程组的应用.【分析】设商品A的标价为x元,商品B的标价为y元,由题意得等量关系:①4个A的花费+3个B的花费=93元;②6个A的花费+6个B的花费=162元,根据等量关系列出方程组,再解即可.【解答】解:设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为12元,商品B的标价为15元;第17页(共17页)所以3×12+2×15=66元,故选C 6.已知一次函数y1=ax+c和反比例函数y2=的图象如图所示,则二次函数y3=ax2+bx+c的大致图象是(
5、 )A.B.C.D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【分析】根据一次函数与反比例函数图象找出a、b、c的正负,再根据抛物线的对称轴为x=﹣,找出二次函数对称轴在y轴左侧,比对四个选项的函数图象即可得出结论.【解答】解:∵一次函数y1=ax+c图象过第一、二、四象限,∴a<0,c>0,∴二次函数y3=ax2+bx+c开口向下,与y轴交点在x轴上方;∵反比例函数y2=的图象在第二、四象限,∴b<0,∴﹣<0,∴二次函数y3=ax2+bx+c对称轴在y轴左侧.满足上述条件的函数图象只有B选项.故选B. 7.
6、不等式组的整数解有三个,则a的取值范围是( )第17页(共17页)A.﹣1≤a<0B.﹣1<a≤0C.﹣1≤a≤0D.﹣1<a<0【考点】一元一次不等式组的整数解.【分析】根据不等式组的整数解有三个,确定出a的范围即可.【解答】解:不等式组的解集为a<x<3,由不等式组的整数解有三个,即x=0,1,2,得到﹣1≤a<0,故选A 8.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角
7、形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为( )A.13B.19C.25D.169【考点】勾股定理的证明.【分析】根据题意,结合图形求出ab与a2+b2的值,原式利用完全平方公式化简后代入计算即可求出值.【解答】解:根据题意得:c2=a2+b2=13,4×ab=13﹣1=12,即2ab=12,则(a+b)2=a2+2ab+b2=13+12=25,故选C 9.将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为( )A.2B.+1C.D.1【考点】简单几何体
8、的三视图.【分析】先求得正方体的一个面的上的对角线的长度,然后可求得正方体视图面积的最大值.【解答】解:正方体正视图为正方形或矩形.∵正方体的棱长为1,∴边长为1.∴每个面的对角线的长为=.∴正方体的正视图(矩形)的长的最大值为.∵始终保持正方体的一个面落在桌面
此文档下载收益归作者所有