代数、几何、分析三者到底有什么不同

代数、几何、分析三者到底有什么不同

ID:36108876

大小:41.00 KB

页数:15页

时间:2019-05-06

代数、几何、分析三者到底有什么不同_第1页
代数、几何、分析三者到底有什么不同_第2页
代数、几何、分析三者到底有什么不同_第3页
代数、几何、分析三者到底有什么不同_第4页
代数、几何、分析三者到底有什么不同_第5页
资源描述:

《代数、几何、分析三者到底有什么不同》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、--代数、几何、分析三者到底有什么不同以正整数作为研究对象的数论,可以看作是算术的一部分,但它不是以运算的观点,而是以数的结构的观点,即一个数可用性质较简单的其它数来表达的观点来研究数的。因此可以说,数论是研究由整数按一定形式构成的数系的科学。早在公元前3世纪,欧几里得的《原本》讨论了整数的一些性质。他证明素数的个数是无穷的,他还给出了求两个数的公约数的辗转相除法。这与我国《九章算术》中的“更相减损法”是相同的。埃拉托色尼则给出了寻找不大于给定的自然数N的全部素数的“筛法”:在写出从1到N的全部整数的纸草上,依次挖去2、3、5、7……的倍数(各自的2倍,3倍,……)以及1

2、,在这筛子般的纸草上留下的便全是素数了。当两个整数之差能被正整数m除尽时,便称这两个数对于“模”m同余。我国《孙子算经》(公元4世纪)中计算一次同余式组的“求一术”,有“中国剩余定理”之称。13世纪,秦九韶已建立了比较完整的同余式理论——“大衍求一术”,这是数论研究的内容之一。丢番图的《算术》中给出了求x?+y?=z?所有整数解的方法。费尔马指出x^n+y^n=z^n在n>3时无整数解,对于该问题的研究产生了19世纪的数论。之后高斯的《数论研究》(1801年)形成了系统的数论。数论的古典内容基本上不借助于其它数学分支的方法,称为初等数论。17世纪中叶以后,曾受数论影响而发

3、展起来的代数、几何、分析、概率等数学分支,又反过来促进了数论的发展,出现了代数数论(研究整系数多项式的根—“----代数、几何、分析三者到底有什么不同以正整数作为研究对象的数论,可以看作是算术的一部分,但它不是以运算的观点,而是以数的结构的观点,即一个数可用性质较简单的其它数来表达的观点来研究数的。因此可以说,数论是研究由整数按一定形式构成的数系的科学。早在公元前3世纪,欧几里得的《原本》讨论了整数的一些性质。他证明素数的个数是无穷的,他还给出了求两个数的公约数的辗转相除法。这与我国《九章算术》中的“更相减损法”是相同的。埃拉托色尼则给出了寻找不大于给定的自然数N的全部素

4、数的“筛法”:在写出从1到N的全部整数的纸草上,依次挖去2、3、5、7……的倍数(各自的2倍,3倍,……)以及1,在这筛子般的纸草上留下的便全是素数了。当两个整数之差能被正整数m除尽时,便称这两个数对于“模”m同余。我国《孙子算经》(公元4世纪)中计算一次同余式组的“求一术”,有“中国剩余定理”之称。13世纪,秦九韶已建立了比较完整的同余式理论——“大衍求一术”,这是数论研究的内容之一。丢番图的《算术》中给出了求x?+y?=z?所有整数解的方法。费尔马指出x^n+y^n=z^n在n>3时无整数解,对于该问题的研究产生了19世纪的数论。之后高斯的《数论研究》(1801年)形

5、成了系统的数论。数论的古典内容基本上不借助于其它数学分支的方法,称为初等数论。17世纪中叶以后,曾受数论影响而发展起来的代数、几何、分析、概率等数学分支,又反过来促进了数论的发展,出现了代数数论(研究整系数多项式的根—“----代数数”)、几何数论(研究直线坐标系中坐标均为整数的全部“整点”—“空间格网”)。19世纪后半期出现了解析数论,用分析方法研究素数的分布。二十世纪出现了完备的数论理论。5、抽象代数1843年,哈密顿发明了一种乘法交换律不成立的代数——四元数代数。第二年,格拉斯曼推演出更有一般性的几类代数。1857年,凯雷设计出另一种不可交换的代数——矩阵代数。他们

6、的研究打开了抽象代数(也叫近世代数)的大门。实际上,减弱或删去普通代数的某些假定,或将某些假定代之以别的假定(与其余假定是相容的),就能研究出许多种代数体系。1870年,克隆尼克给出了有限阿贝尔群的抽象定义;狄德金开始使用“体”----的说法,并研究了代数体;1893年,韦伯定义了抽象的体;1910年,施坦尼茨展开了体的一般抽象理论;狄德金和克隆尼克创立了环论;1910年,施坦尼茨总结了包括群、代数、域等在内的代数体系的研究,开创了抽象代数学。1926年,诺特完成了理想(数)理论;1930年,毕尔霍夫建立格论,它源于1847年的布尔代数;第二次世界大战后,出现了各种代数系

7、统的理论和布尔巴基学派;1955年,嘉当、格洛辛狄克和爱伦伯克建立了同调代数理论。到现在为止,数学家们已经研究过200多种这样的代数结构,其中最主要德若当代数和李代数是不服从结合律的代数的例子。这些工作的绝大部分属于20世纪,它们使一般化和抽象化的思想在现代数学中得到了充分的反映。抽象代数是研究各种抽象的公理化代数系统的数学学科。典型的代数系统有群、环、域等,它们主要起源于19世纪的群论,包含有群论、环论、伽罗华理论、格论、线性代数等许多分支,并与数学其它分支相结合产生了代数几何、代数数论、代数拓扑、拓扑群等新的数学学科。抽象

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。