江苏省启东中学2018-2019学年高一数学上学期期中习题

江苏省启东中学2018-2019学年高一数学上学期期中习题

ID:36064870

大小:920.16 KB

页数:9页

时间:2019-05-04

江苏省启东中学2018-2019学年高一数学上学期期中习题_第1页
江苏省启东中学2018-2019学年高一数学上学期期中习题_第2页
江苏省启东中学2018-2019学年高一数学上学期期中习题_第3页
江苏省启东中学2018-2019学年高一数学上学期期中习题_第4页
江苏省启东中学2018-2019学年高一数学上学期期中习题_第5页
资源描述:

《江苏省启东中学2018-2019学年高一数学上学期期中习题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、江苏省启东中学2018-2019学年高一数学上学期期中试题(考试用时:120分钟总分:150分)第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下图中,能表示函数的图像的是()A.B.C.D.2.下列五个写法:,其中错误写法的个数为(  )A.1B.2C.3D.43.下列各组函数表示同一函数的是()A.B.C.D.4.已知, 则(  )A.5B.-1C.-7D.25.已知集合,则适合的非空集合B的个数为()A.31B.6

2、3C.64D.626.函数的定义域是(   )A.B.C.D.7.若a>0,将表示成分数指数幂,其结果是()A.B.C.D.8.函数的零点所在区间是(  )A.B.C.D.9.直线与函数图象的交点个数为()A.4个B.3个C.2个D.1个10.已知奇函数在时的图象如图所示,则不等式的解集为()A.B.C.D.11.已知是定义在上的减函数,则实数的取值范围是(  ).A.B.C.D.12.已知函数,若对任意的,总存在,使得,则实数的取值范围是()A.B.C.D.以上都不对第Ⅱ卷(非选择题共90分)二、填空题

3、:本大题共4个小题,每小题5分,共20分。13.函数恒过定点________14.已知集合,若,实数的取值范围是______.15.已知,若,则______.16.若函数在上有意义,则实数的取值范围是______.三、解答题:解答应写出文字说明、证明过程或演算步骤,本大题共6小题,共70分。17.(本小题10分)已知集合,,,全集为实数集.()求,()若,求实数的范围.18.(本小题12分)计算:(1).(2).19.(本小题12分)已知函数,其中且.(1)若,求满足的集合.(2)若,求的取值范围.20.

4、(本小题12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过4尾/立方米时,的值为2千克/年;当时,是的一次函数,当达到20尾/立方米时,因缺氧等原因,的值为0千克/年.(1)当时,求函数关于的函数表达式;(2)当养殖密度为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.21.(本小题12分)已知函数.(1)判断的奇偶性;(2)判断并证明的

5、单调性,写出的值域.22.(本小题12分)已知.(1)若,求方程的解;(2)若关于x的方程在(0,2)上有两个解,求k的取值范围,并证明江苏省启东中学2018-2019学年度第一学期期中考试高一数学参考答案(普通)(考试用时:120分钟总分:150分)第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1-5.CCCDB6-10.BCCAC11-12.BA第Ⅱ卷(非选择题共90分)二、填空题:本大题共4个小题,每小题5分,共20

6、分。13.答案:(3,4);14.答案:a≤或a≥2;15.答案:-14;16.答案:三、解答题:解答应写出文字说明、证明过程或演算步骤,本大题共6小题,共70分。17.解:(1)∵A={x

7、x2-6x+5}={1

8、1<2x-2<16}={x

9、2

10、x≤1或x≥5}…………………………5分(2)∵C={x

11、y=ln(a-x)}={x

12、x

13、2).………………………12分19.解:(),,时,,∴,即,………………3分得或.………………5分(),………………6分当时,,∴,得,矛盾,舍去,……………9分当,,∴,∴,综上.………………12分20.解:(1)由题意得当时,;当时,设,………………2分由已知得解得,所以,故函数………………5分(2)设鱼的年生长量为千克/立方米,依题意并由(1)可得当时,为增函数,故;………………8分当时,,,所以当时,的最大值为………………11分即当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值为千

14、克/立方米.………………12分21.解:………………5分………………10分………………12分22.解:(1)当k=2时,,①当,即x≥1或x≤-1时,方程化为,解得,因为,舍去,所以;②当,即-1<x<1时,方程化为2x+1=0,解得:;由①②得,当k=2时,方程f(x)=0的解为或。………………4分(2)不妨设,因为,所以f(x)在(0,1]是单调函数,故f(x)=0在(0,1]上至多一个解,若,则<0,故不符题意,因此;由

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。