《用二分法求方程的近似解》教案

《用二分法求方程的近似解》教案

ID:36024393

大小:42.00 KB

页数:3页

时间:2019-04-29

《用二分法求方程的近似解》教案_第1页
《用二分法求方程的近似解》教案_第2页
《用二分法求方程的近似解》教案_第3页
资源描述:

《《用二分法求方程的近似解》教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《用二分法求方程的近似解》教案教学要求根据具体函数图象,能够借助计算器用二分法求相应方程的近似解.通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.教学重点用二分法求方程的近似解.教学重点恰当的使用信息工具.教学过程(一)、复习准备:1.提问:什么叫零点?零点的等价性?零点存在性定理?2.探究:一元二次方程求根公式?三次方程?四次方程?材料:高次多项式方程公式解的探索史料:在十六世纪,已找到了三次和四次函数的求根公式,但对于高于4次的函数,类似的努力却一直没有成功,到

2、了十九世纪,根据阿贝尔(Abel)和伽罗瓦(Galois)的研究,人们认识到高于4次的代数方程不存在求根公式,亦即,不存在用四则运算及根号表示的一般的公式解.同时,即使对于3次和4次的代数方程,其公式解的表示也相当复杂,一般来讲并不适宜作具体计算.因此对于高次多项式函数及其它的一些函数,有必要寻求其零点的近似解的方法,这是一个在计算数学中十分重要的课题(二)、讲授新课:提出问题:(1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程㏑x+2x-6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知

3、识来求她的根呢?(2)通过前面一节课的学习,函数f(x)=㏑x+2x-6在区间内有零点;进一步的问题是,如何找到这个零点呢?研讨新知一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)*f(3)<0,所以零点在区间(2.5,3)内;再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512,因为f(2.

4、75)*f(2.5)<0,所以零点在(2.5,2.75)内;由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。例如,当精确度为0.01时,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我们可以将x=2.54作为函数f(x)=㏑x+2x-6零点的近似值,也就是方程㏑

5、x+2x-6=0近似值。这种求零点近似值的方法叫做二分法。1.仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的思想方法.认真理解二分法的函数思想,并根据课本上二分法的一般步骤,探索其求法。2.为什么由︱a-b︳<便可判断零点的近似值为a(或b)?先由学生思考几分钟,然后作如下说明:设函数零点为x0,则a<x0<b,则:0<x0-a<b-a,a-b<x0-b<0;由于︱a-b︳<,所以︱x0-a︳<b-a<,︱x0-b︳<∣a-b∣<,即a或b作为零点x0的近似值都达到了给定的精确度。㈢、巩固深化,发展思维完成

6、下面的例题例1.借助计算器用二分法求方程2x+3x=7的近似解(精确到0.01)问题:原方程的近似解和哪个函数的零点是等价的?借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用二分法求解.练习1、求函数的一个正数零点(精确到)2、设,用二分法求方程内近似解的过程中,计算得到则方程的根落在区间().A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定(四).课堂回顾与小结二分法的概念,二分法的步骤;注重二分法思想

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。