一元二次方程地知识点总结材料

一元二次方程地知识点总结材料

ID:35996321

大小:329.30 KB

页数:8页

时间:2019-04-29

一元二次方程地知识点总结材料_第1页
一元二次方程地知识点总结材料_第2页
一元二次方程地知识点总结材料_第3页
一元二次方程地知识点总结材料_第4页
一元二次方程地知识点总结材料_第5页
资源描述:

《一元二次方程地知识点总结材料》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、实用文案一元二次方程知识点的总结知识结构梳理(1)含有个未知数。(2)未知数的最高次数是1、概念(3)是方程。(4)一元二次方程的一般形式是。(1)法,适用于能化为的一元。二次方程一元二次方程(2)法,即把方程变形为ab=0的形式,2、解法(a,b为两个因式),则a=0或(3)法(4)法,其中求根公式是当时,方程有两个不相等的实数根。(5)当时,方程有两个相等的实数根。当时,方程有没有的实数根。可用于解某些求值题(1)一元二次方程的应用(2)(3)可用于解决实际问题的步骤(4)(5)(6)标准文档实用文案知识点归类建立一元二次方程模型知识点一一元二次方程的定义如果一个方程通过移项

2、可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。注意:一元二次方程必须同时满足以下三点:①方程是整式方程。②它只含有一个未知数。③未知数的最高次数是2.同时还要注意在判断时,需将方程化成一般形式。例下列关于的方程,哪些是一元二次方程?⑴;⑵;(3);(4);(5)知识点二一元二次方程的一般形式一元二次方程的一般形式为(a,b,c是已知数,)。其中a,b,c分别叫做二次项系数、一次项系数、常数项。注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它

3、先化为一般形式。(3)形如不一定是一元二次方程,当且仅当时是一元二次方程。例1将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项。(1);(2);(3)例2已知关于的方程是一元二次方程时,则知识点三一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解,如:当时,所以是方程的解。一元二次方程的解也叫一元二次方程的根。知识点四建立一元二次方程模型建立一元二次方程模型的步骤是:审题、设未知数、列方程。注意:(1)审题过程是找出已知量、未知量及等量关系;(2)设未知数要带单位;(3)建立一元二次方程模型的关键是依题意找出等量关系。例如图(1),有一个面积为15

4、0㎡的长方形鸡场,鸡场一边靠墙(墙长18m),另三边用竹篱笆围成,若竹篱笆的长为35m,求鸡场的长和宽各为多少?鸡场(只设未知数,列出方程,并将它化成一般形式。)因式分解法、直接开平方法标准文档实用文案知识点一因式分解法解一元二次方程如果两个因式的积等于0,那么这两个方程中至少有一个等于0,即若pq=0时,则p=0或q=0。用因式分解法解一元二次方程的一般步骤:(1)将方程的右边化为0;(2)将方程左边分解成两个一次因式的乘积。(3)令每个因式分别为0,得两个一元一次方程。(4)解这两个一元一次方程,它们的解就是原方程的解。关键点:(1)要将方程右边化为0;(2)熟练掌握多项式因

5、式分解的方法,常用方法有:提公式法,公式法(平方差公式,完全平方公式)等。例用因式分解法解下列方程:(1);(2);(3)。知识点二直接开平方法解一元二次方程若,则叫做a的平方根,表示为,这种解一元二次方程的方法叫做直接开平方法。(1)的解是;(2)的解是;(3)的解是。例用直接开平方法解下列一元二次方程(1);(2);(3)知识点三灵活运用因式分解法和直接开平方法解一元二次方程形如的方程,既可用因式分解法分解,也可用直接开平方法解。例运用因式分解法和直接开平方法解下列一元二次方程。(1);(2)知识点四用提公因式法解一元二次方程把方程左边的多项式(方程右边为0时)的公因式提出,

6、将多项式写出因式的乘积形式,然后利用“若pq=0时,则p=0或q=0”来解一元二次方程的方法,称为提公因式法。如:,将原方程变形为,由此可得出注意:在解方程时,千万注意不能把方程两边都同时除以一个含有未知数的式子,否则可能丢失原方程的根。知识点五形如“”的方程的解法。对于形如“”标准文档实用文案的方程(或通过整理符合其形式的),可将左边分解因式,方程变形为,则,即。注意:应用这种方法解一元二次方程时,要熟悉“”型方程的特征。例解下列方程:(1);(2)配方法知识点一配方法解一元二次方程时,在方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,这种

7、方法叫做配方,配方后就可以用因式分解法或直接开平方法了,这样解一元二次方程的方法叫做配方法。注意:用配方法解一元二次方程,当对方程的左边配方时,一定记住在方程的左边加上一次项系数的一半的平方后,还要再减去这个数。例用配方法解下列方程:(1);(2)知识点二用配方法解二次项系数为1的一元二次方程用配方法解二次项系数为1的一元二次方程的步骤:(1)在方程的左边加上一次项系数的一半的平方,再减去这个数;(2)把原方程变为的形式。(3)若,用直接开平方法求出的值,若n﹤0,原方程无解。例

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。