弧长地公式、扇形面积公式、圆锥、圆柱、弓形面公式及其应用、四棱台体积公式

弧长地公式、扇形面积公式、圆锥、圆柱、弓形面公式及其应用、四棱台体积公式

ID:35943239

大小:282.01 KB

页数:11页

时间:2019-04-26

弧长地公式、扇形面积公式、圆锥、圆柱、弓形面公式及其应用、四棱台体积公式_第1页
弧长地公式、扇形面积公式、圆锥、圆柱、弓形面公式及其应用、四棱台体积公式_第2页
弧长地公式、扇形面积公式、圆锥、圆柱、弓形面公式及其应用、四棱台体积公式_第3页
弧长地公式、扇形面积公式、圆锥、圆柱、弓形面公式及其应用、四棱台体积公式_第4页
弧长地公式、扇形面积公式、圆锥、圆柱、弓形面公式及其应用、四棱台体积公式_第5页
资源描述:

《弧长地公式、扇形面积公式、圆锥、圆柱、弓形面公式及其应用、四棱台体积公式》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、实用标准文案【本讲教育信息】一.教学内容:弧长及扇形的面积圆锥的侧面积 二.教学要求1、了解弧长计算公式及扇形面积计算公式,并会运用公式解决具体问题。2、了解圆锥的侧面积公式,并会应用公式解决问题。 三.重点及难点重点:1、弧长的公式、扇形面积公式及其应用。2、圆锥的侧面积展开图及圆锥的侧面积、全面积的计算。难点:1、弧长公式、扇形面积公式的推导。2、圆锥的侧面积、全面积的计算。 [知识要点]知识点1、弧长公式因为360°的圆心角所对的弧长就是圆周长C=2R,所以1°的圆心角所对的弧长是,于是可得半径为R的圆中,n°的圆心角所对的弧长l的计算公式

2、:,说明:(1)在弧长公式中,n表示1°的圆心角的倍数,n和180都不带单位“度”,例如,圆的半径R=10,计算20°的圆心角所对的弧长l时,不要错写成。(2)在弧长公式中,已知l,n,R中的任意两个量,都可以求出第三个量。 知识点2、扇形的面积如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是360°的扇形面积等于圆面积,所以圆心角为1°的扇形面积是,由此得圆心角为n°的扇形面积的计算公式是。又因为扇形的弧长,扇形面积,所以又得到扇形面积的另一个计算公式:。 文档实用标准文案知识点

3、3、弓形的面积(1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。(2)弓形的周长=弦长+弧长(3)弓形的面积如图所示,每个圆中的阴影部分的面积都是一个弓形的面积,从图中可以看出,只要把扇形OAmB的面积和△AOB的面积计算出来,就可以得到弓形AmB的面积。当弓形所含的弧是劣弧时,如图1所示, 当弓形所含的弧是优弧时,如图2所示,当弓形所含的弧是半圆时,如图3所示,例:如图所示,⊙O的半径为2,∠ABC=45°,则图中阴影部分的面积是(       )(结果用表示)分析:由图可知由圆周角定理可知∠ABC=∠AOC,所以∠

4、AOC=2∠ABC=90°,所以△OAC是直角三角形,所以,所以注意:(1)圆周长、弧长、圆面积、扇形面积的计算公式。 圆周长弧长圆面积扇形面积公式(2)扇形与弓形的联系与区别(2)扇形与弓形的联系与区别图示文档实用标准文案面积 知识点4、圆锥的侧面积圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2,圆锥的侧面积,圆锥的全面积说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。(2)研究有关圆锥的侧面积和全面积的计算问题,关键是理解圆锥的侧面积公式,并明确圆锥全面积与侧面积之间的

5、关系。或知识点4、如果用r来表示底面半径,l表示圆锥的母线,n°表示圆锥侧面扇形的圆心角的度数,则底面周长为2πr,所以扇形的弧线长度也为2πr,而弧线长度(扇形所占圆周长)就等于n°/360°.扇形所占圆是以以母线l为半径的,所以它的周长为2πr,得出n/360=2πr/2πl=r/lr/l就是弧线长度与扇形所占圆周长之比,也就是扇形与扇形所占圆的面积之比。所以,只需求出扇形所占圆的面积再乘以r/l便可以得出扇形的面积。而扇形所占圆的面积为πl2,即可得出:S侧=πl2×r/l=πrl向前再推一步,又得出扇形面积的计算公式:S侧=πrl=1/2

6、×2πr×l=1/2×底面弧线长×母线长由此推导出圆锥侧面扇形面积等于πrl,等于3.14乘以底面半径再乘以母线即可。圆锥的表面积为侧面积加底面积,又为:文档实用标准文案S表=S侧+S底=πrl+πr2=πrl+πr×r=πr(l+r)知识点5、圆柱的侧面积圆柱的侧面积展开图是矩形,如图所示,其两邻边分别为圆柱的高和圆柱底面圆的周长,若圆柱的底面半径为r,高为h,则圆柱的侧面积,圆柱的全面积知识小结:圆锥与圆柱的比较名称圆锥圆柱图形图形的形成过程 由一个直角三角形旋转得到的,如Rt△SOA绕直线SO旋转一周。由一个矩形旋转得到的,如矩形ABCD绕

7、直线AB旋转一周。图形的组成一个底面和一个侧面两个底面和一个侧面侧面展开图的特征扇形矩形面积计算方法 【典型例题】文档实用标准文案例1.(2003.辽宁)如图所示,在同心圆中,两圆的半径分别为2,1,∠AOB=120°,则阴影部分的面积是(    )A.       B.        C.        D.分析:阴影部分所在的两个扇形的圆心角为,所以故答案为:B. 例2.(2004·陕西)如图所示,点C在以AB为直径的半圆上,连接AC,BC,AB=10厘米,tan∠BAC=,求阴影部分的面积。分析:本题考查的知识点有:(1)直径所对圆周角为9

8、0°,(2)解直角三角形的知识(3)组合图形面积的计算。解:因为AB为直径,所以∠ACB=90°,在Rt△ABC中,AB=10,tan∠

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。