小波变换与jpeg2000编码

小波变换与jpeg2000编码

ID:35935008

大小:1.64 MB

页数:68页

时间:2019-04-25

小波变换与jpeg2000编码_第1页
小波变换与jpeg2000编码_第2页
小波变换与jpeg2000编码_第3页
小波变换与jpeg2000编码_第4页
小波变换与jpeg2000编码_第5页
资源描述:

《小波变换与jpeg2000编码》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、•67•第10章小波变换与JPEG2000编码第10章小波变换与JPEG2000编码虽然基于DCT的JPEG标准的压缩效果已经很不错,但在较高压缩比时会出现明显的马赛克现象,且不能渐进传输。为了适应网络发展的需要,JPEG于2000年底推出了采用DWT(DiscreteWaveletTransform离散小波变换)的JPEG2000标准。小波变换是1980年代中期发展起来的一种时频分析方法,比DCT这样的傅立叶变换的性能更优越,被广泛应用于调和分析、语音处理、图像分割、石油勘探和雷达探测等等方面,也被应用于音频、图像和视频的压缩编

2、码。本章先介绍小波变换的来龙去脉,然后分别介绍连续小波变换、离散小波变换、Haar小波变换和整数小波变换,最后介绍JPEG2000的编码算法和标准。10.1小波变换小波变换(wavelettransform)是傅立叶变换的发展,中间经历了窗口傅立叶变换。原始数据一般是时间或空间信号,在时空上有最大分辨率。时空信号经傅立叶变换后得到频率信号,在频域上有最大分辨率,但其本身并不包含时空定位信息。窗口傅立叶变换通过对时空信号进行分段或分块进行时空-频谱分析,但由于其窗口的大小是固定的,不适用于频率波动大的非平稳信号。而小波变换可以根据频

3、率的高低自动调节窗口大小,是一种自适应的时频分析方法,具有多分辨分析功能。本节先讨论小波变换与(窗口)傅立叶变换的关系,然后依次介绍连续小波变换、离散小波变换、Haar小波变换和第二代小波变换(整数小波变换)。10.1.1傅立叶变换与小波变换傅立叶变换(Fouriertransform)是法国科学家JosephFourier发表于1822年的他在用无穷三角级数求解热传导偏微分方程时所提出的一种数学方法,它可将时空信号变换成频率信号。JosephFourier鉴于傅立叶变换不含时空定位信息,(1971年的诺贝尔物理学奖获得者)匈牙利

4、人DennisGabor于1946年提出窗口傅立叶变换(windowFouriertransform)。可以用于时频分析,但是窗口大小是固定的。1984年法国的物理学家JeanMorlet和A.Grossman,在进行石油勘探的地震数据处理分析时,又提出了具有可变窗口的自适应时频分析方法——•67•第10章小波变换与JPEG2000编码小波变换(wavelettransform)。l傅立叶变换傅立叶变换(Fouriertransform)是1807年法国科学家JosephFourier在研究热力学问题时所提出来的一种全新的数学方法

5、,当时曾受到数学界的嘲笑与抵制,后来却得到工程技术领域的广泛应用,并成为分析数学的一个分支——傅立叶分析。原始的多媒体数据一般为时空信号,在时空上有最大分辨率,并可利用时空上的相关性进行数据压缩。Fourier变换可将时空域中的多媒体信号映射到频率域来研究,即更符合人类感觉特征,也可以利用信号在频率域中的冗余进行数据压缩。Fourier变换所得的频率信号,在频率域上有最大分辨率,但其本身并不包含时空定位信息。时空信号:f(t),t∈(-∞,∞)(一维时间信号,参见图10-1)f(x,y),x,y∈(-∞,∞)(二维空间信号)图10

6、-1音频信号的时间波形图Fourier变换,F(w)为频率信号:(参见图10-2)•67•第10章小波变换与JPEG2000编码图10-2音频信号的频率图l窗口傅立叶变换虽然基于Fourier变换的频谱分析,在需要信号分析及数据处理的物理、电子、化学、生物、医学、军事、语音、图像、视频等众多科学研究与工程技术的广阔领域得到了非常广泛和深入应用,但对既需要频谱分析又要求时空定位的应用,如雷达探测、语音识别、图像处理、地震数据分析等等,Fourier分析技术就显得力不从心了。为了弥补Fourier变换不能时空定位的不足,工程技术领域长

7、期以来一直采用D.Gabor开发的窗口Fourier变换(短时Fourier变换),来对时空信号进行分段或分块的时空-频谱分析(时频分析)。窗口Fourier变换:(参见图10-4)其中,g为窗口函数(参见图10-3)。图10-3音频处理中常用的几种窗口函数•67•第10章小波变换与JPEG2000编码图10-4音频信号的三维频谱图虽然窗口Fourier变换能部分解决Fourier变换时空定位问题,但由于窗口的大小是固定的,对频率波动不大的平稳信号还可以,但对音频、图像等突变定信号就成问题了。本来对高频信号应该用较小窗口,以提高分

8、析精度;而对低频信号应该用较大窗口,以避免丢失低频信息;而窗口Fourier变换则不论频率的高低,都统一用同样宽度的窗口来进行变换,所以分析结果的精度不够或效果不好。迫切需要一种更好的时频分析方法。l小波变换近二十年来发展起来的小波(wavelet

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。