高中数学 点直线平面之间的位置关系2.3直线平面垂直的判定及其性质2.3.4平面与平面垂直的性质检测新人教a版

高中数学 点直线平面之间的位置关系2.3直线平面垂直的判定及其性质2.3.4平面与平面垂直的性质检测新人教a版

ID:35817480

大小:181.54 KB

页数:6页

时间:2019-04-20

高中数学 点直线平面之间的位置关系2.3直线平面垂直的判定及其性质2.3.4平面与平面垂直的性质检测新人教a版_第1页
高中数学 点直线平面之间的位置关系2.3直线平面垂直的判定及其性质2.3.4平面与平面垂直的性质检测新人教a版_第2页
高中数学 点直线平面之间的位置关系2.3直线平面垂直的判定及其性质2.3.4平面与平面垂直的性质检测新人教a版_第3页
高中数学 点直线平面之间的位置关系2.3直线平面垂直的判定及其性质2.3.4平面与平面垂直的性质检测新人教a版_第4页
高中数学 点直线平面之间的位置关系2.3直线平面垂直的判定及其性质2.3.4平面与平面垂直的性质检测新人教a版_第5页
资源描述:

《高中数学 点直线平面之间的位置关系2.3直线平面垂直的判定及其性质2.3.4平面与平面垂直的性质检测新人教a版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3.4平面与平面垂直的性质A级基础巩固一、选择题1.在空间中,下列命题正确的是()A.垂直于同一条直线的两直线平行B.平行于同一条直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行解析:A项中垂直于同一条直线的两直线可能平行、异面或相交;B项中平行于同一条直线的两个平面可能平行或相交;C项中垂直于同一平面的两个平面可能平行或相交;D项正确.答案:D2.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题正确的是()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α解析

2、:对于A,若m⊥n,n∥α,则m⊂α或m∥α或m⊥α或m与α斜交,故A错误;对于B,若m∥β,β⊥α则m⊂α或m∥α或m⊥α或m与α斜交,故B错误;对于C,若m⊥β,n⊥β,则m∥n,又n⊥α,则m⊥α,故C正确;对于D,若m⊥n,n⊥β,β⊥α,则m⊂α或m∥α或m⊥α或m与α斜交,故D错误.答案:C3.若平面α⊥平面β,平面β⊥平面γ,则()A.a∥γB.α⊥γC.α与γ相交但不垂直D.以上都有可能解析:两个平面都垂直于同一个平面,则这两个平面可能平行,也可能相交,故A,B,C都有可能.答案:D4.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一个底面的垂线,则这条垂线与圆

3、柱的母线所在直线的位置关系是()A.相交B.平行C.异面D.相交或平行解析:由线面垂直的性质可得.答案:B5.在正方体ABCDA1B1C1D1中,若E为A1C1的中点,则直线CE垂直于()A.ACB.BDC.A1DD.A1A解析:如图所示,连接AC,BD,因为BD⊥AC,A1C1∥AC,所以BD⊥A1C1,因为BD⊥A1A,所以BD⊥平面ACC1A1,因为CE⊂平面ACC1A1,所以BD⊥CE.答案:B二、填空题6.已知AF⊥平面ABCD,DE⊥平面ABCD,如图所示,且AF=DE,AD=6,则EF=________.解析:因为AF⊥平面ABCD,DE⊥平面ABCD,所以AF∥DE,又AF=

4、DE,所以四边形AFED是平行四边形,所以EF=AD=6.答案:67.设a,b是两条不同的直线,α,β是两个不同的平面,有下列四个说法:①若a⊥b,a⊥α,b⊄α,则b∥α;②若a∥α,a⊥β,则α⊥β;③若a⊥β,α⊥β,则a∥α或a⊂α;④若a⊥b,a⊥α,b⊥β,则α⊥β.其中正确的个数为________.解析:①若a⊥b,a⊥α,可得出b∥α或b⊂α,又b⊄α,可得出b∥α,①正确;②若a∥α,a⊥β,由线面平行的性质定理可以得出在α内存在一条线c⊥β,故可得出α⊥β,②正确;③由a⊥β,α⊥β,可得出a∥α或a⊂α,③正确;④由a⊥b,a⊥α,可得出b∥α或b⊂α,又b⊥β,可得出

5、α⊥β,④正确.答案:48.已知直二面角αlβ,点A∈α,AC⊥l,点C为垂足,B∈β,BD⊥l,点D为垂足.若AB=2,AC=BD=1,则CD的长为________.解析:如图,连接BC.因为二面角αlβ为直二面角,AC⊂α,且AC⊥l,α∩β=l,所以AC⊥β.又BC⊂β,所以AC⊥BC,所以BC2=AB2-AC2=3.又BD⊥CD,所以CD==.答案:三、解答题9.如图,在四棱锥PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.证明:(1)在四棱锥PABCD中,因为PA⊥底面AB

6、CD,CD⊂平面ABCD,所以PA⊥CD.因为AC⊥CD,PA∩AC=A,所以CD⊥平面PAC,而AE⊂平面PAC,所以CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.因为E是PC的中点,所以AE⊥PC.由(1)知,AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD,而PD⊂平面PDC,所以AE⊥PD.因为PA⊥底面ABCD,PD在底面ABCD内的射影是AD,AB⊥AD,所以AB⊥PD.又因为AB∩AE=A,所以PD⊥平面ABE.10.(2017·全国卷Ⅰ)如图,在四棱锥PABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)

7、若PA=PD=AB=DC,∠APD=90°,且四棱锥PABCD的体积为,求该四棱锥的侧面积.(1)证明:由已知∠BAP=∠CDP=90°,得AB⊥AP,CD⊥PD.由于AB∥CD,故AB⊥PD,从而AB⊥平面PAD.又AB⊂平面PAB,所以平面PAB⊥平面PAD.(2)解:如图,在平面PAD内作PE⊥AD,垂足为E.由(1)知,AB⊥平面PAD,故AB⊥PE,AB⊥AD,可得PE⊥平面ABCD.设AB=x,则

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多