资源描述:
《matlab图像去噪算法设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数字图像去噪典型算法及matlab实现希望得到大家的指点和帮助图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等;目前比较经典的图像去噪算法主要有以下三种:均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物
2、边缘的平滑处理。中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。实验一:均值滤波对高斯噪
3、声的效果I=imread('C:Documentsand桌面1.gif');%读取图像J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声subplot(2,3,1);imshow(I);title('原始图像');subplot(2,3,2);imshow(J);title('加入高斯噪声之后的图像');%采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波K1=filter2(fspecial('average',3),J)/255;%模板尺寸为3K2=filter2(fspecial('average
4、',5),J)/255;%模板尺寸为5K3=filter2(fspecial('average',7),J)/255;%模板尺寸为7K4=filter2(fspecial('average',9),J)/255;%模板尺寸为9subplot(2,3,3);imshow(K1);title('改进后的图像1');subplot(2,3,4);imshow(K2);title('改进后的图像2');subplot(2,3,5);imshow(K3);title('改进后的图像3');subplot(2,3,6);imshow(K4);title('改进后的图像4');PS:filte
5、r2用法fspecial函数用于创建预定义的滤波算子,其语法格式为:h=fspecial(type)h=fspecial(type,parameters)参数type制定算子类型,parameters指定相应的参数,具体格式为:type='average',为均值滤波,参数为n,代表模版尺寸,用向量表示,默认值为[3,3]。type='gaussian',为高斯低通滤波器,参数有两个,n表示模版尺寸,默认值为[3,3],sigma表示滤波器的标准差,单位为像素,默认值为0.5。type='laplacian',为拉普拉斯算子,参数为alpha,用于控制拉普拉斯算子的形状,取值范围
6、为[0,1],默认值为0.2。type='log',为拉普拉斯高斯算子,参数有两个,n表示模版尺寸,默认值为[3,3],sigma为滤波器的标准差,单位为像素,默认值为0.5type='prewitt',为prewitt算子,用于边缘增强,无参数。type='sobel',为著名的sobel算子,用于边缘提取,无参数。type='unsharp',为对比度增强滤波器,参数alpha用于控制滤波器的形状,范围为[0,1],默认值为0.2。运行效果见图1:据我目测,使用均值滤波去噪(高斯噪声)效果选用的邻域半径越大效果越好,当然其代价也会更大,另外确切的去噪效果的好坏还需要用SNR等
7、数据来度量。实验二:二维自适应维纳滤波对高斯噪声的滤除效果I=imread('C:Documentsand桌面1.gif');%读取图像J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声K2=wiener2(J,[33]);%对加噪图像进行二维自适应维纳滤波K2=wiener2(J,[55]);%对加噪图像进行二维自适应维纳滤波K2=wiener2(J,[77]);%对加噪图像进行二维自适应维纳滤波K2=wiener2(