资源描述:
《2019版八年级数学下册第十七章勾股定理17.1勾股定理(第1课时)教案(新版)新人教版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第十七章 勾股定理17.1 勾股定理第1课时【教学目标】知识与技能:1.掌握勾股定理的证明.2.会用勾股定理进行简单的计算.过程与方法:经历探究勾股定理的过程,在探索勾股定理的过程中,发展合情推理能力,体会数形结合思想,学会与人合作并能与他人交流思维的过程和探究结果,体验数学思维的严谨性.情感态度与价值观:(1)通过对勾股定理历史的了解,感受数学的文化,激发学习热情.(2)在探究活动中,学会与人合作并能与他人交流思维的过程和探究的结果;学生通过适当训练,养成数学说理的习惯,培养学生参与的积极性,
2、逐步体验数学说理的重要性;在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探究精神.【重点难点】重点:掌握勾股定理的证明,会用勾股定理进行简单的计算.难点:勾股定理的证明.【教学过程】一、创设情境,导入新课: 一个直角三角形的两条直角边长分别是3和4,你知道它的斜边长是多少吗?已知直角三角形的两条边长,你能求出它的第三边长吗?实际上,利用勾股定理我们可以很容易地解决这些问题.勾股定理是一个古老的定理,人类很早就发现了这个定理.2002年世界数学家大会在我国北京召开,投影显示本届世
3、界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.二、探究归纳活动1:探索勾股定理1.填空:(1)借助方格纸画一个直角三角形,使其两直角边分别是3cm,4cm,则量取其斜边为________cm. (2)如图,四边形均是正方形,SA=16、SB=9、SC=25则它们的面积之间满足:______. 2.思考:(1)问题1中的直角三角形三边的平方,满足什么关系?(2)问题2中由正方形A、B、C的
4、面积关系,可以得到直角三角形的三边的平方有什么关系?3.归纳:勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么______. 活动2:利用拼图证明勾股定理1.方法1:(1)引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗?(2)观察下面两幅图:2.归纳:探索图形A、B、C面积的关系,引导学生得出勾股定理:如果直角三角形两直角边长分别为a、b,斜边长为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.方法2:1.如图,将4个非等腰直角
5、三角形,拼为一个大的正方形.(1)拼得大正方形的边长为________,则它的面积是________;大正方形的面积还可以表示为______+4×ab. (2)由它们的面积关系可得____=____+4×ab,整理得__________. 2.归纳:勾股定理:如果直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方.活动3:应用举例【例1】 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D.已知BC=8,AC=6,求线段CD的长
6、.分析:先由勾股定理求出AB的长,再根据三角形面积公式求出CD的长解:∵∠ACB=90°,BC=8,AC=6,∴AB=10.∵CD⊥AB,∴AB·CD=AC·BC,即×10×CD=×8×6,∴CD=.总结:运用勾股定理求解线段长度问题的方法1.找出图中的直角三角形,或作辅助线构造直角三角形;2.找出所求线段与直角三角形的关系;3.根据勾股定理计算相关线段的平方,然后确定线段长度.【例2】 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积
7、分别为2,5,1,2.则最大的正方形E的面积是__________. 分析:根据正方形的面积公式,结合勾股定理,能够推导出正方形A,B,C,D的面积和即为最大正方形E的面积.解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=2+5+1+2=10.答案:10总结:本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面
8、积.【例3】 一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的验证方法.如图,火柴盒的一个侧面ABCD倒下到AB′C′D′的位置,连接CC′,设AB=a,BC=b,AC=c,请利用四边形BCC′D′的面积验证勾股定理:a2+b2=c2.分析:四边形BCC′D′的面积从大的一方面来说属于直角梯形,可利用直角梯形的面积公式进行表示.从组成来看,由三个直角三角形组成,可利用三角形的面积公式来进行表示.证明:四边形BCC′D′为直角梯形.∴S梯形BCC′D′=(BC+C′D′)·BD′=.