欢迎来到天天文库
浏览记录
ID:35766789
大小:1.05 MB
页数:22页
时间:2019-04-17
《重庆市九校联盟高三联合考试数学(文)---精品解析Word版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、www.ks5u.com高三数学考试(文科)第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x
2、3-2x<-1},B={x
3、x(2x-5)≤0},则A∪B=A.B.C.[0,+∞)D.【答案】C【解析】【分析】解不等式化简集合,利用一元二次不等式的解法化简集合,然后利用并集的定义求解即可.【详解】,,,故选C.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合.2.若复数满足,则的虚部为()A.B.C.1
4、D.-1【答案】D【解析】【分析】由复数的除法运算化简即可得解.【详解】由,可得.z的虚部为-1,故选D.【点睛】本题主要考查了复数的除法运算,属于基础题.-22-3.函数的图象大致是()A.B.C.D.【答案】C【解析】【分析】利用排除法,由排除选项;由排除选项,从而可得结果.【详解】,,排除选项;,排除选项,故选C.【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图
5、象.4.已知平面向量满足,且,则向量的夹角为A.B.C.D.【答案】A【解析】【分析】由,结合可得,利用平面向量的数量积公式可得结果.-22-【详解】,,所以,可得,即,,设两向量夹角为,则,,,即为,故选A.【点睛】本题主要考查向量的模、夹角及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).5.已知函数f(x)为R上的奇函数,当x<0时,,则xf(x)≥0的解集为()A.[-1,
6、0)∪[1,+∞)B.(-∞,-1]∪[1,+∞)C.[-1,0]∪[1,+∞)D.(-∞,-1]∪{0}∪[1,+∞)【答案】D【解析】【分析】由时,,可得在上递增,利用奇偶性可得在上递增,再求得,分类讨论,将不等式转化为不等式组求解即可.【详解】时,,,且在上递增,又是定义在上的奇函数,,且在上递增,-22-等价于或或,解得或或,即解集为,故选D.【点睛】本题主要考查函数的奇偶性与单调性的应用,属于难题.将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间
7、上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.6.设x,y满足约束条件则z=4x+y的最小值为()A.-3B.-5C.-14D.-16【答案】C【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出表示的可行域,如图,-22-由可得,可得,将变形为,平移直线,由图可知当直经过点时,直线在轴上的截距最小,最小值为,故选C.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“
8、一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.7.某几何体的三视图如图所示(其中俯视图中的曲线是圆弧),则该几何体的表面积为A.4π+6B.6π+6C.4π+3D.6π+3【答案】A【解析】【分析】由三视图可知,该几何体为半个圆柱,圆柱的底面半圆的半径为1,半圆柱高为3,算出各表面的面积即可得结果.【详解】由三视图可知,该几何体为半个圆柱,圆柱的底面半圆的半径为1,半圆柱高为3,-22-
9、其表面积有四部分组成,上、下底面半圆面积为,轴截面矩形面积为,圆柱侧面积的一半为,几何体表面积为,故选A.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.8.为了得到y=−2cos2x的图象,只需把函数的图象(
10、)A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答
此文档下载收益归作者所有