新课标指出“使学生获得必要的数学基础知识和基本技能”...

新课标指出“使学生获得必要的数学基础知识和基本技能”...

ID:35699977

大小:97.50 KB

页数:4页

时间:2019-04-13

新课标指出“使学生获得必要的数学基础知识和基本技能”..._第1页
新课标指出“使学生获得必要的数学基础知识和基本技能”..._第2页
新课标指出“使学生获得必要的数学基础知识和基本技能”..._第3页
新课标指出“使学生获得必要的数学基础知识和基本技能”..._第4页
资源描述:

《新课标指出“使学生获得必要的数学基础知识和基本技能”...》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、---新课标指出“使学生获得必要的数学基础知识和基本技能”是高中数学课程的目标之一。我国著名的数学家华罗庚先生曾用“数缺形时少直观,形离数时难入微,数形结合百般好,隔裂分家万事休”形象生动的阐述了数形结合的意义。以下结合自己的教学实践,分别从引导学生直观感受基本的数学概念,亲身探究定理、结论产生的背景及应用等方面渗透数形结合思想,逐步提高学生的数形结合的能力。在解决数学问题时,根据问题的条件和结论,使数的问题借助形去观察,而形的问题借助数去思考,采用这种“数形结合”来解决问题的策略,我们称之为“数形结合的思想方法”。

2、它的主要特点:数形问题解决;或形数问题解决。也就是说:“以形助数”、“以数赋形”两种处理问题的途径,这本身体现了转化的思想,化归的思想。数形结合的基本思路是:根据数的结构特征,构造出与之相适应的几何图形,并利用图形的特性和规律,揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种结合,寻找解题思路,使问题得到解决。一、借助直观图示,理解抽象概念,研究函数的性质,直观体会数形结合思想在进行人教B版必修1第二章函数的教学时,在初中学生对函数已有了初步的认识,但对用集合语言描述函数的概念,用代数方法研究

3、函数的单调性、奇偶性等性质还是感到困难,因此在教学中我采取用数形结合思想让学生借助直观图示理解抽象概念,自己动手画函数的图象,研究函数的性质。在讲完函数的概念以后,我出了一道这样的练习题:下列图象中不能作为函数的图象的是(  ) 让学生从形的角度进一步理解函数的概念。在研究一次函数和二次函数的性质与图象时,由于学生在初中已用描点法作过一次函数和二次函数的图象,因此我先从学生已有知识出发,让学生列表、描点、连线,作出一次函数和二次函数的图象,引导他们先从数的角度认识单调性、奇偶性,对称性,然后再通过图象直观感觉单调性、

4、奇偶性,对称性,让学生深刻体会“数缺形时少直观,形离数时难入微”。二、借助实验活动,探究直线与平面垂直的判定定理,形象感受数形结合思想在必修2中1.2.3空间中的垂直关系教学中,我们都知道可以用定义判断直线与平面垂直,但无法验证任意性,故不具有可操作性。于是,为寻求其它可操作的判断方法,做如下实验:如图1,请同学们准备好一块(任意)三角形的纸片,过的顶点A所在的直线翻折纸片,得到折痕AD,将翻折后的纸片竖直放置在桌面上(BD、DC与桌面接触) ------图1探究1:折痕AD与桌面垂直吗?为什么?(析:不垂直,因为A

5、D与BD、DC不垂直)探究2:如何翻折才能使折痕AD与桌面所在的平面垂直?(析:当折痕AD是BC边上的高,即时,翻折后折痕AD与桌面垂直)在这只实验中,根据直线与平面垂直的定义引导学生分析“不垂直”的原因。当时,引导学生继续进行实验,如图2,固定BD,并保持BD与CD紧贴桌面,让面CAD绕着AD旋转,观察可知AD始终与桌面垂直,利用直线与平面垂直的定义引导学生分析“垂直”的原因。引导学生发现折痕AD与桌面垂直的本质特征:、且BD、CD是桌面内的两条相交直线。当时,无论怎样翻折,翻折后垂直关系不变。图2探究3:由上述实

6、验,怎样判断直线与平面垂直?(析:一条直线与平面内的两条相交直线都垂直,则该直线与平面垂直)探究4:若一条直线垂直平面内的两条直线,能判断直线与平面垂直吗?(析:不能,必须是相交直线)探究5:若一条直线与平面内的一条直线垂直,能判断直线与平面垂直吗?(析:不能,让学生举例)通过实验,归纳出了“直线与平垂直的判定定理”。整个过程是使学生空间想象能力、动手操作能力、探究能力得到了集中体现。为此,让学生自己亲自动手,深刻体会到数形结合的魅力。从中我们得到一个启发,让学生自己开展适度的设计活动,有利于提高空间想象力,发展思维

7、能力。三、借助单位圆中的三角函数线,推导诱导公式,深刻领悟数形结合思想在进行人教B版必修4第一章基本初等函数(Ⅱ------)的教学时,因为在必修1中对数形结合思想已经进行了有效的渗透,因此想在这一章中试着慢慢放手,让学生自己运用数形结合思想解决有关问题。以下我以单位圆的应用为例,说说我是如何借助单位圆,利用与单位圆有关的三角函数线引导学生运用数形结合思想。诱导公式的推导:首先让学生画出单位圆和角与的终边,分别做出角与所对应的三角函数线,再引导学生观察角与的三角函数线的关系,如图,观察三角函数线可知,与三角函数的关系

8、的正弦线相等,余弦相反。 即同样的办法可找到角与的三角函数的关系。如图,的正弦线等于的余弦线的相反数,即 的余弦线等于的正弦线的相反数,即从这个角度来看,让学生理解知识的来龙去脉、推导过程,数形结合地研究诱导公式,比一味的要求学死记硬背效果要好得多。借助单位圆数形结合的知识还很多,例如利用单位圆推导同角三角函数基本关系式、探究作正弦曲线并研究其

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。